
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
Project Number IST-2006-033789 

Project Title  Planets 

Title of Deliverable  Consolidated Release and Documentation 

Deliverable Number  IF-D11 

Contributing Sub-
project and Work-
package  

IF/2, IF/4, IF/5, IF/8 

Deliverable  
Dissemination Level 

External 

Deliverable Nature  Report 

Contractual Delivery 
Date  

31th March 2010 

Actual Delivery Date  15th May 2010 

Author(s)  Andrew Jackson, Andrew Lindley, Fabian Steeg 
 
 
 
 
 
 
 



Abstract 
This document describes the consolidated release of the Planets Interoperability 
Framework (IF) and should serve as a Reference Manual for that work. The purpose of this 
document is to provide an overview of the technical architecture (section 1), common API 
(section 2), digital object model (section 3), and workflow engine (section 4) of the Planets 
IF. For detailed documentation and working code consult the Javadoc API documentation 
and the unit tests, both available from the Planets GForge site: 

 http://gforge.planets-project.eu/gf/

Within a few weeks of the project closure (May 2010), this information will also be 
available as part of a SourceForge project: 

http://planets-suite.sourceforge.net/

Section 1 (technical architecture) provides an overview of the aims of the Planets IF, the 
variations and commonalities of the partner institutions involved and the resulting 
consequences for the general architecture of the Planets IF. 

Section 2 (common API) is organized around two central aspects of the Planets IF API: 
services and data. In each of these subsections, related concepts and API elements are 
covered, in particular the central interfaces and data types, the service registry, and the 
format registry. 
 
Section 3 (digital object model) describes the central noun in the IF, the digital object, 
including its underlying schema, content representation, and serialization mechanism, as 
well as its storage in a data registry. 
 
Section 4 (workflow engine) describes how to incorporate Planets Services in complex 
workflow operations, taking into account domain specific business logic, and how to 
configure, interpret, and execute these models in a controlled environment. 
 
Keyword list 
Interoperability, Architecture, Preservation Action, Framework, Web Services, Workflows 
 
 

http://gforge.planets-project.eu/gf/
http://planets-suite.sourceforge.net/


Project: IST-2006-033789 Planets                 Deliverable: IF-D11 

Page 3 of 26  

Contributors 

Person Role Partner Contribution 
Fabian Steeg Developer University of Cologne 

(UzK) 
Initial draft, common API (section 2) 
and digital object model (section 3) 

Andrew Jackson Developer British Library (BL) Section 1 – technical architecture 

Andrew Lindley Developer Austrian Institute of 
Technology (AIT) 

Section 4 – workflow engine 

 

 



Project: IST-2006-033789 Planets                 Deliverable: IF-D11 

Page 4 of 26  

TABLE OF CONTENTS 
 
 
1.  Technical Architecture ..............................................................................................................5 

1.1  Overview and Aims...............................................................................................................5 
1.2  Variations..............................................................................................................................6 
1.3  Commonalities......................................................................................................................6 
1.4  Consequences......................................................................................................................7 

2.  Common API ............................................................................................................................7 
2.1  Introduction...........................................................................................................................7 
2.2  Services................................................................................................................................8 

2.2.1  Service Interfaces..........................................................................................................8 
2.2.2  Service Responses .......................................................................................................9 
2.2.3  Service Implementation.................................................................................................9 

2.2.3.1  Being Planets services...........................................................................................9 
2.2.3.2  Using Planets services.........................................................................................10 

2.3  Service Descriptions...........................................................................................................10 
2.4  Service Registry ................................................................................................................. 11 

2.4.1.1  Java API ............................................................................................................... 11 
2.4.1.2  SOAP API.............................................................................................................12 

2.5  Data ....................................................................................................................................12 
2.5.1  Digital Objects .............................................................................................................12 
2.5.2  Formats .......................................................................................................................13 
2.5.3  Format Registry...........................................................................................................13 

2.6  Usage Samples ..................................................................................................................13 
3.  Digital Object Model ...............................................................................................................14 

3.1  Digital Objects.....................................................................................................................14 
3.1.1  Content Representation ..............................................................................................14 
3.1.2  Interfaces and Builders ...............................................................................................14 

3.2  XML Serialization................................................................................................................15 
3.3  Data Registry......................................................................................................................17 

3.3.1  Java API ......................................................................................................................17 
3.3.2  SOAP API....................................................................................................................17 

4.  Workflow Engine ....................................................................................................................17 
4.1  Introduction.........................................................................................................................17 
4.2  Components and Interaction ..............................................................................................17 

4.2.1  Workflow Template and Utilities ..................................................................................18 
4.2.2  Workflow Configuration ...............................................................................................19 
4.2.3  Workflow Factory and Workflow Instance ...................................................................20 
4.2.4  WorkflowTemplateRegistry..........................................................................................20 
4.2.5  WorkflowExecutionManager........................................................................................21 
4.2.6  Batch Processor ..........................................................................................................21 
4.2.7  Logging Workflow Results...........................................................................................21 
4.2.8  Utility Wrappers ...........................................................................................................22 

4.3  Usage Samples ..................................................................................................................22 
5.  Appendix ................................................................................................................................23 

5.1  Workflow Configuration ......................................................................................................23 
5.2  Batch Processor .................................................................................................................23 
5.3  Workflow Usage Sample ....................................................................................................24 



Project: IST-2006-033789 Planets                 Deliverable: IF-D11 

Page 5 of 26  

1. Technical Architecture 

1.1 Overview and Aims 
Over the last four years, the Planets project has successfully implemented a service-
oriented framework for digital preservation. Planets is a software suite that aims to provide 
the necessary infrastructure to support this, along with user applications to exploit this 
infrastructure for preservation purposes. From the outset, the project plan recognised the 
need for a clearly defined and modular software infrastructure, in order to make creation 
and maintenance of such a complex system manageable.  

This is in common with other work, and is most closely related to the Micro Services of 
Abrams. See 'Preservation is not a place' 
http://ijdc.net/index.php/ijdc/article/viewFile/98/73, related  
http://www.cdlib.org/services/uc3/curation/, Merritt: An Emergent Approach to Digital 
Curation Infrastructure. Rev. 0.5 (2009-11-10), and Abrams' publication from iPres 2009. 

In Planets, the very wide variation of the needs and requirements of the different partners 
have been explored and have framed the design and evolution of the software system. By 
analysing the variation in these requirements across partners, we were able to tease out a 
framework that embodies the commonality between them. This is not intended to be the 
final word on preservation architectures, but rather a flexible framework that allows 
extension and further standardisation over time as appropriate. 

 

Figure 1: Planets and OAIS-compliant Repositories 



Project: IST-2006-033789 Planets                 Deliverable: IF-D11 

Page 6 of 26  

It should also be mentioned that the Planets software suite is not and never was intended to 
be a fully OAIS1-compliant infrastructure. Rather, it was always assumed that Planets 
stakeholders would have an archive in place, whose functionality would be extended by the 
Planets Suite in order to carry out preservation planning and preservation actions on the 
digital objects within the archive (see Figure 1). This design decision has consequences 
that are explored in more detail in the following sections. 

1.2 Variations 
A critical source of technical variation between the partners was that of the choice of 
repository system, both in terms of variation in hardware and operating system, as well as 
the choice of architectural trade-offs. Most partners used bespoke storage software, based 
on their needs and costs, in some cases designed in-house, and in other cases in partnership 
with others outside of the Planets project.  

This lead to perhaps the most important design decision in the project: Planets is not a 
repository. In contrast to other systems (e.g. RODA), we do not attempt to blend storage 
and preservation actions into a single system, and instead provide a well-defined 
framework for integrating with existing storage systems. This also reflects an expectation 
that an institution's repository storage system and management process will only change 
slowly, due to the costs associated with migrating large amounts of data safely. In contrast, 
the range of software tools, and the rate of exploration and investigation of different 
possible actions mean the preservation tools of choice are likely to change much more 
rapidly, even in a production setting. This flux is a natural consequence of the uncertainty 
around how best to preserve access to digital objects over time. 

Another important source of variation between the partners was the requirements for 
metadata support. This includes variation in the models and metadata entities that different 
institutions wish to store, as well as the forms in which they wish to encode them. In 
general, the metadata held by the partner institutions reflects the internal evolution of 
metadata management and practice, and can vary within each institution between different 
collections, depending on the needs of the designated community as well as the 
institutional context. However, it was recognised that while the full extent of metadata 
requirements could not be captured, some core metadata could probably be meaningfully 
shared (e.g. Dublin Core). Therefore, the Planets software needs to be agnostic towards 
metadata requirements, allowing local variations to be catered for while encouraging 
metadata standardisation where possible and appropriate. 

1.3 Commonalities 
Despite the variation in metadata, the variation in the technical properties of the actual 
content items was perhaps surprisingly low. The range of content items held was analysed 
(Gap analysis: a survey of PA tool provision, PA/2 D3), and it was found that the vast 
majority of content was covered by around 20 file formats (mostly TIFF, JPG and PDF).  

This made it possible to agree on a Digital Object concept, at least in terms of a single 
bitstream with associated metadata records, making exchange of digital objects possible 
via a standardised serialization. However, the gap analysis also indicated that the content 
distribution contains a very long tail of different formats and composite (multi-bitstream) 
                                                      
1 Open Archival Information System standard (OAIS), ISO 14721:2003 



Project: IST-2006-033789 Planets                 Deliverable: IF-D11 
types. Therefore, the Digital Object model had to be easy to extend to new digital object 
types, and be able to describe composite digital objects as necessary. 

As well as content types, the core actions that the partners wished to perform we also 
found to be shared across institutions. For example, identification, characterisation, 
migration and other preservation 'verbs' were already in use in each of the partners, and it 
was recognised that it should be possible to standardise these actions and integrate the tools 
that implement them. The preservation workflow that an institution chooses to employ may 
vary depending on the context, but the tools and services used to implement that workflow 
should be shared. 

1.4 Consequences 
To summarise, the types of digital objects vary weakly between institutions, whereas the 
metadata requirements vary strongly, and the storage systems and management procedures 
required vary massively and are represent a further, distinct field of research. Many of 
these differences are fundamental to the needs and requirements of each institution, 
requiring us to separate the institutionally-dependent needs from the needs common to all 
institutions.  

These observations lead to the critical guiding principle of the development - to facilitate, 
not dictate. The Planets approach only enforces enough standardization to facilitate the 
exchange of data necessary to implement a functional digital preservation system. The 
Planets approach does not force a particular institution to organise its storage or metadata 
in a particular way, or limit the range of tools, approaches, or evaluation methodologies 
that an institution might employ. However, it does attempt to provide a framework on 
which further standardisation can be built. 

2. Common API 

2.1 Introduction   
This section describes the API of the Planets Interoperability Framework (IF). The purpose 
of this section is to provide a high-level introductory overview of the API. For detailed 
documentation consult the Javadoc API documentation and the unit tests, both included in 
the Planets Services (PSERV) project. 

(see http://gforge.planets-project.eu/gf/project/pserv) 

The Planets Interoperability Framework (IF) has three levels of access: UI, web service 
API and native Java API (see Figure 2).  

 

Page 7 of 26  
Figure 2: Planets IF overview

http://gforge.planets-project.eu/gf/project/pserv


Project: IST-2006-033789 Planets                 Deliverable: IF-D11 

Page 8 of 26  

This section is organized around two central aspects of the Planets IF API: services and 
data. In each of these sections, related concepts and API elements are covered, in particular 
the central interfaces and data types, the service registry, the data registry and the format 
registry. 

2.2 Services 
The Planets IF takes a Java-first approach to web services. This means the WSDL is 
generated from Java Interfaces containing web service annotations. Therefore, the Planets 
IF can be used both as a platform-independent web service framework and as a plain Java 
library for digital preservation systems and service development. 

2.2.1 Service Interfaces 

The different kinds of Planets services are defined as Java Interfaces. Each preservation 
action verb has a corresponding Java Interface, e.g. 
 Migrate, Validate, Identify, Characterise, Compare, Modify 
 

Additionally, there are some specialized versions of these Interfaces and some additional, 
less common interfaces (see the eu.planets_project.services package). 
A service implementation written in Java implements the desired Interface and defines 
itself as a web service using the @WebService annotation with an endpointInterface 
attribute. This allows the service to reuse all web service specific settings from the 
Interfaces, without declaring them itself. 
For Java clients, using JAX-WS (see https://jax-ws.dev.java.net/) enables usage of the web 
service without interfering with SOAP or a WSDL directly, using a proxy object that 
appears to the client as a normal object implementing the given Interface (Migrate, 
Validate, etc.). 

A non-Java client can generate stubs from the WSDL that is generated from the service by 
JAX-WS in the way specified in the Interfaces. This way, Planets services can be accessed 
in a language-independent way.  

Figure 3 provides an overview of the Planets IF services API. 

 

Figure 3: Planets IF services Java (top) and web service (bottom) API 

https://jax-ws.dev.java.net/


Project: IST-2006-033789 Planets                 Deliverable: IF-D11 
2.2.2 Service Responses 

All Planets Interfaces define a method corresponding to the verb they implement (e.g. 
migrate, validate, identify), which returns a result, whose type is determined by the verb 
(e.g. MigrateResult, ValidateResult, IdentifyResult). 
Result types are typically made of the verb-specific result (e.g. a digital object for 
migration, a format for identification, etc.) and a general service report. A service report 
consists of a type (info, error, warn), a status (success, installation error, tool error) and a 
message: 
  ServiceReport report = new ServiceReport(Type.INFO, Status.SUCCESS, message; 
 

2.2.3 Service Implementation 

 
The following sections provide an overview both on implementing Planets services (being 
Planets services) and calling Planets service implementations (using Planets services). 
 

2.2.3.1 Being Planets services 

 
To make functionality usable as Planets services (and have them registered in a Planets 
service registry) the best way to go is to implement the most suitable Planets preservation 
verb Interface (e.g. Migrate, Validate, Identify, Characterise, Modify, 
...). This will not only allow the services to be registered in a Planets service registry (see 
Figure 4), but will also allow preservation workflows querying the service registry (e.g. for 
a migration service) to discover the service. 
 

 
s 

I
s
t
r
n
3
 
P
S
o

Figure 4: Planets IF services: Java classes and interface
Page 9 of 26  

f implementing one of the preservation verb Interfaces is not feasible and automatic 
upport for discovery by workflows is not required, a service could also directly implement 
he PlanetsService Interface. This allows the service to be stored in a Planets service 
egistry. It can be queried based on all the properties set in the service description, but will 
ot automatically be interoperable on a workflow level with Planets services (see Figure 
). 

lanets services are only registered indirectly in a service registry, using a 
erviceDescription object (see Figure 3 and details in the following section). These 
bjects can be serialized to XML. To register a non-Java service in a Planets service 



Project: IST-2006-033789 Planets                 Deliverable: IF-D11 

Page 10 of 26  

registry, an XML representation conforming to the Planets service description schema can 
be generated and stored in a Planets service registry. 
 

2.2.3.2 Using Planets services 

As described above, on the basic level Planets services are Java classes implementing 
certain Java Interfaces. If you want to access Planets functionality on the Java platform 
without working in a web service environment, Planets can be seen as a normal Java API, 
i.e. you can just instantiate classes, e.g: 
 
  Migrate jtidy = new JTidy(); 

 
See the API documentation for further details. 
 
If you want to access remote Planets web services from Java, you can use JAX-WS to hide 
the SOAP layer and retrieve a proxy object from a server that will conform to the interface 
(i.e. you will work with an instance of a class that implements the interface, e.g. Migrate: 
 
  URL wsdl = new URL("http://127.0.0.1:8080/pserv-pa-jtidy/JTidy?wsdl"); 

  Migrate jtidy = ServiceUtils.createService(Migrate.QNAME, Migrate.class, wsdl); 

 
To access Planets services from non-Java platforms, you can either generate stubs from the 
WSDL exposed for the service or directly create SOAP messages conforming to the web 
service schemas (for service descriptions, digital objects, etc). 
 

2.3 Service Descriptions 
Each Interface described above extends the PlanetsService Interface, which defines a 
describe() method. This method returns a service description containing service 
metadata like input format, tool name and version, service provider, etc. The XML 
representations of these service descriptions are used to register and look up services in the 
Planets service registry (cf. Figure 4). 
A flexible query by example mechanism (cf. next section) allows for service lookup based 
on various service attributes (see Figure 5 for all available service description attributes). 
 



Project: IST-2006-033789 Planets                 Deliverable: IF-D11 

 

The
ma
sele
com

The
http
be 
AP

The

  S
 

Figure 5: Service description attributes (used for queries by example in the 
service registry)
Page 11 of 26  

 

2.4 Service Registry 
 Planets service registry enables users and service providers to look up, publish and 

nage information about Planets services. This information can be used to dynamically 
ct and invoke simple services, as well as to reuse them as part of choreographed 
plex workflows. 

 service registry code is available from the Planets Services (PSERV) project (see 
://gforge.planets-project.eu/gf/project/pserv) (in IF/servreg). The service registry can 

accessed from the IF administration interface and as a Java or SOAP-based web service 
I. 

2.4.1.1 Java API 

 local service registry can be accessed via the ServiceRegistryFactory class: 

erviceRegistry registry = ServiceRegistryFactory.getServiceRegistry(); 

http://gforge.planets-project.eu/gf/project/pserv


Project: IST-2006-033789 Planets                 Deliverable: IF-D11 

Page 12 of 26  

To connect to a remote service registry, supply the location of the WSDL to the factory 
method. 

Using the service registry instance, ServiceDescription objects can be registered and the 
registry can be queried. Queries are submitted using a query by example mechanism: a 
ServiceDescription object describing the services to find is created and passed to the 
query method, e.g. to find identification services by name: 

  registry.query( 
    new ServiceDescription.Builder("DROID", Identify.class.getName()).build()); 

 

The given values of the service description can be matched using different modes: exact 
(default), wildcard, and regular expression matching, e.g. for finding identification services 
by name and using wildcard matching: 

  registry.queryWithMode(new ServiceDescription.Builder( 

 "DROID*", Identify.class.getName()).build(), MatchingMode.WILDCARD); 

 

Figure 4 shows the structure of the ServiceDescription objects used as examples in the 
queries. Any combination of these attributes can be set in the query example, allowing 
flexible and customizable service queries (e.g. find migration services that can migrate 
PNF to TIFF based on the ImageMagick tool). 

The query methods of the service registry return a list of ServiceDescription objects. 
These service descriptions contain the information required to instantiate a service (in 
particular, the service endpoint).  

The IF offers convenience API to instantiate a service from a service description in a Java 
environment, e.g. for an identification service from the example above: 

  Identify service = ServiceUtils.createService(serviceDescription); 
 

See RemoteServiceCreationTests in the code repository for a complete example on 
using the service creation utility methods. 

2.4.1.2 SOAP API 

The mechanisms and API described above (query by example, optional matching mode) 
can be accessed via SOAP, passing the sample service description in its XML 
representation. 

2.5 Data 
2.5.1 Digital Objects 

The central noun involved in using the Planets IF API is the digital object. The digital 
object model is described in detail in section 3. 



Project: IST-2006-033789 Planets                 Deliverable: IF-D11 

Page 13 of 26  

2.5.2 Formats 

Another central noun in the Planets IF API is the format, e.g. to specify the format a digital 
object should be migrated to (e.g. migrate a digital object to PNG) or the format of a file to 
validate (e.g. validate that a digital object is a PNG). 

Formats are represented as URIs in the Planets IF API. The URIs can specify a PRONOM 
ID (see http://www.nationalarchives.gov.uk/PRONOM/), a file extension, or a MIME type. 

 

2.5.3 Format Registry 
Figure 6: Planets IF formats Java API

The format registry enables access to and creation of the various format-URIs used in the 
Planets IF API. A registry instance can (as for the other registries) be obtained from the 
corresponding factory (which again enables us to hide the actual registry implementation 
behind the API): 

  FormatRegistry registry = FormatRegistryFactory.getFormatRegistry(); 
 

Given the registry, we can create format URIs for PRONOM IDs, MIME types or file 
extensions, e.g.: 

  URI puid = registry.createPronomUri("fmt/13"); 
 

The format registry also provides ways to map the different format types (PRONOM, 
MIME, extension) onto each other, e.g.: 

  Set<String> extensions = registry.getExtensions(puid); 
 

2.6 Usage Samples 
Implementations of services of all the different Interfaces (Migrate, Validate, 
Identify, etc.), including client sample usage, usage of digital objects, service 
descriptions and usage of the service, data and format registries, as well as complete 
documentation and sample usage for the classes and Interfaces described above can be 
found in the Planets Services (PSERV) project (see http://gforge.planets-
project.eu/gf/project/pserv). 

http://www.nationalarchives.gov.uk/PRONOM/
http://gforge.planets-project.eu/gf/project/pserv
http://gforge.planets-project.eu/gf/project/pserv


Project: IST-2006-033789 Planets                 Deliverable: IF-D11 

Page 14 of 26  

3. Digital Object Model 

Figure 7: Planets IF digital object Java (top) and web service (bottom) API 

3.1 Digital Objects 
The central noun involved in using the Planets IF API is the digital object. A digital object 
represents a single byte stream involved in a preservation action (e.g. identify a digital 
object). Figure 6 provides an overview of the Planets IF digital object API. 

3.1.1 Content Representation 

To allow streaming of large files over web services, a digital object's content can be created 
in two conceptually different ways: by value (the content is actually embedded in the XML 
representation of the digital object and thus in the SOAP message, too) or by reference (the 
content will be streamed as an attachment to the SOAP message). 

Embedded content by value can be created from a byte array, a file, or an input stream: 

  new DigitalObject.Builder(Content.byValue(bytes)).build(); 
 

Streamable content by reference can be created from a URL, a file, or an input stream: 

  new DigitalObject.Builder(Content.byReference(url)).build(); 
 

In whatever way the content has been created, it can be read in a uniform way: 

  InputStream stream = digitalObject.getContent().getInputStream(); 
 

When passed over web services, content by reference has the ability to be attached to the 
SOAP message and be streamed from the client to the server and vice versa, based on web 
service interoperability standards implemented by the METRO web service stack (see 
http://java.sun.com/webservices/). This avoids storing the entire digital object in the RAM 
and therefore enables the transmission of digital objects that are larger than the available 
RAM on the client or server side. 

3.1.2 Interfaces and Builders 

The central entities of the Planets API (DigitalObject, ServiceDescription, etc.) are 
implemented as immutable classes, which are created using builders. 

The usage of a builder can be seen in the example illustrating the content representation 
above: a minimal digital object consists of nothing but its content. If we want to set 
additional attributes of the digital object (e.g. a unique ID), these are set on the builder 
before the object is built: 

http://java.sun.com/webservices/


Project: IST-2006-033789 Planets                 Deliverable: IF-D11 

Page 15 of 26  

  new DigitalObject.Builder(Content.byValue(bytes)).permanentUri(id).build(); 
 

By setting these attributes on the builder, the resulting digital object instance can be 
immutable and thus be used and shared freely, also in concurrent computing setups. At the 
same time, combining an Interface with a builder allows for the actual implementation 
class to be hidden behind the API (e.g. to be changed or swapped out after releasing the 
API). Having a DigitalObject Interface also allows third party implementations of the 
Planets digital object model. 

3.2 XML Serialization 
To allow passing of digital objects via web services, a JAXB XML adapter defines a 
standard DigitalObject implementation (ImmutableDigitalObject) to be used. This 
implementation, however, is hidden from a Java API consumer and only exposed as a 
WSDL. 

Besides supporting XML serialization for web service usage, digital objects can also be 
stored as XML directly via the API: 

  String xml = digitalObject.toXml();  
 

Given such an XML representation, the digital object instance can be instantiated directly 
via the API: 

  DigitalObject object = new DigitalObject.Builder(xml).build(); 
 

The XML serialization schema of the digital object is described in Figure 8 (digital object) 
and 9 (structure of the contained event properties). 



Project: IST-2006-033789 Planets                 Deliverable: IF-D11 

Page 16 of 26  

 
Figure 8: Digital Object XML Schema Definition 

 

 
Figure 9: Digital Object Event XML Schema Definition 



Project: IST-2006-033789 Planets                 Deliverable: IF-D11 

Page 17 of 26  

3.3 Data Registry 
The data registry enables storage and retrieval of digital objects. The 
DigitalObjectManager Interface can be implemented for different concrete storage 
solutions. 

3.3.1 Java API 

Like the ServiceRegistry, a DataRegistry is instantiated using its factory: 
 
  DataRegistry registry = DataRegistryFactory.getDataRegistry(); 

 
The data registry can be used to store digital objects under an ID, represented as a URI: 

  registry.store(uri, digitalObject); 
 

Digital objects can be retrieved from the data registry using the given ID: 

  DigitalObject digitalObject = registry.retrieve(uri);  
 

3.3.2 SOAP API 

Like the service registry, the Planets data registry is also available as a SOAP-based web 
service, which uses the XML serialization mechanism of digital objects described above 
and allows language-independent access to a Planets data registry. 

4. Workflow Engine 

4.1 Introduction 
The Planets Workflow system is integrated with most other building blocks of the Planets 
Interoperability Framework (IF) and is one of its core components. It provides both 
interfaces and utilities which allow domain experts to incorporate Planets Services in 
complex workflow operations, taking into account domain specific business logic (as 
decision making), as well as components to configure, interpret, and execute these models 
in a controlled environment. 

4.2 Components and Interaction 
Generally speaking the Planets Workflow Execution Engine (WEE) component exposes its 
functionality through two web-services / stateless-session-beans which provide the 
application's public interface:  

• WorkflowTemplateRegistry allows browsing, registering and retrieving Workflow 
Templates  

• WorkflowExecutionManager allows submitting workflows with payload and polling 
for the execution's status, progress and results. 



Project: IST-2006-033789 Planets                 Deliverable: IF-D11 

Page 18 of 26  

Additionally, there is a message-driven-bean: the WorkflowExecutionEngine - the actual 
batch job processor. 

4.2.1 Workflow Template and Utilities 

Workflows which are processed on the Planets Framework need to implement the 
eu.planets_project.ifr.core.wee.api.workflow.WorkflowTemplate interface. It defines   

• Planets Service type interfaces which are used (e.g. Identify,  Migrate, 
Compare) but not the actual service instances (e.g. Droid or ImageMagick) 

• The structure and decision making process every single Digital Object within a 
workflow has to pass through (e.g. branching, looping, exception handling, data 
and service flow, event handling, etc.) 

It is also responsible for depositing results within Planets data repositories, documenting 
actions in a structured and traceable manner (by using the WorkflowResult and 
WorkflowResultItem logging objects) and most often will be reflecting events on the 
Digital Object’s data model itself. 

Creating a workflow template is straight-forward and simple. A compliant Java class 
implements the WorkflowTemplate interface and extends the provided 
WorkflowTemplateHelper class, which provides an implementation of all the underlying 
commonly used convenience functionality like data access, etc. as well as all the required 
"magic" to dynamically build up, configure and instantiate a WorkflowInstance 
through reflection at runtime. A WorkflowTemplateProvider therefore only needs to 
implement the methods execute() and describe(). 



Project: IST-2006-033789 Planets                 Deliverable: IF-D11 

Page 19 of 26  

 

 
Figure 10: Sample workflow template implementation class diagram 

All Services that implement a Planets Service interface are allowed within a workflow 
template. There are only three restrictions (one implicit and two explicit ones) that a 
template provider needs to be aware of to provide a valid implementation. 

The first one is a naming convention: The IDs used within the WorkflowConfiguration 
(xml) must corresponds to the object's variable (field) name within the template class e.g. 
<service id="identify1"> and private 
eu.planets_project.services.identify.Identify identify1; 

The other restrictions are enforced by the WorkflowFactory, which validates that the 
ServiceTemplate interface is implemented, and checks that all declared Service 
interfaces within the workflow are within the range of supported Planets service types. 

4.2.2 Workflow Configuration 

An XML representation is used to configure and instantiate a particular workflow template 
so that it’s executable by the WEE subsequently. These XML documents are intended to 
serve as ‘Executable Preservation Plans’ - which are generated and exchanged by the 
Planets applications as Testbed or Plato – and contain recommendations on service 
instances and their corresponding parameter configurations while the payload (i.e. 



Project: IST-2006-033789 Planets                 Deliverable: IF-D11 

Page 20 of 26  

DigitalObject references) is handed over separately to fulfil the requirements on the 
underlying process flow.  

The WorkflowFactory is responsible for unmarshalling the provided workflow XML 
configuration by using JAXB generated objects of the planets-wdt schema (which can be 
found at http://www.planets-project.eu/private/planets-
ftp/WP_IF/IF5/wee/v1Feb2009/planets_wdt.xsd ). 

The first snippet in the appendix presents a sample configuration for instantiating the given 
eu.planets_project.ifr.core.wee.impl.templates.TestbedShowcaseOnImageComp
arisonTemplate workflow template with specific service endpoints and their 
corresponding parameter configurations. 

4.2.3 Workflow Factory and Workflow Instance 

The WorkflowFactory class contains a single public method which takes the JAXB Java 
representation of an XML workflow configuration together with the payload to process the 
given workflow upon and returns a WorkflowInstance object which is processable by 
the batch execution backend.  
 
public static WorkflowInstance create(WorkflowConf wfConf, 
List<DigitalObject> digos) throws Exception 
 
The process steps involved in returning an immutable WorkflowInstance object 
include:  
 

• querying and fetching the requested java workflow source file from the registry 
• validating, compiling, jar-ing and classloading workflow templates on the fly  
• dynamically reflecting on the workflow template's fields for  
• building and initializing proxies for the passed service endpoints and storing their 

service parameter configuration in a WorkflowContext object. 
• including the payload (i.e. data registry references in terms of DigitalObjects) to 

invoke the workflow upon. 

The returned WorkflowInstance object can be submitted to the queue and executed on the 
Planets WorkflowExecutionEngine. 

4.2.4 WorkflowTemplateRegistry 

As mentioned in the section above, the workflow execution system allows to browse, 
retrieve and submit WorkflowTemplates. The following operations are supported: 

• getAllSupportedQNames: returns a list of all fully qualified workflow template 
names (QName) which have been registered on the system and therefore are ready 
to use. 

• getWFTemplate: returns the source (WorkflowTemplate.java source file) of a 
requested QName. As the business logic of the underlying workflow is modelled in 

http://www.planets-project.eu/private/planets-ftp/WP_IF/IF5/wee/v1Feb2009/planets_wdt.xsd
http://www.planets-project.eu/private/planets-ftp/WP_IF/IF5/wee/v1Feb2009/planets_wdt.xsd


Project: IST-2006-033789 Planets                 Deliverable: IF-D11 

Page 21 of 26  

Java, it might be necessary to retrieve and explore the source to fully understand a 
template's behaviour.  

• registerWorkflowTemplate: Expects a fully qualified name of the submitted class. 
e.g. 'eu.planet_project.ifr.core.TemplateName.java' as well the byte representation 
of the Java source file. 

4.2.5 WorkflowExecutionManager 

A web service / stateless session bean is used by the WEE to request submitted workflow 
instances, notify back upon results and progress made, and as an interface to the end users 
or user applications for requesting the status, position, progress or results of a submitted 
workflow execution. 

• submit workflow: the job submission service accepts a of  list of Planets Digital 
Objects (or Digital Object references) which contain the payload the workflow is 
invoked upon, the fully qualified name of the (already previously registered) 
workflow template, together with the specific XML workflow config holding the 
workflow template's configuration to apply. This method returns a job-ticket 
(UUID) which can subsequently be used for on the status and its results 

• querying on a job's status, position in queue or progress 

• retrieving execution results (or intermediate results in case the execution is still 
processing) 

4.2.6 Batch Processor 

The WEE job processor is exposed as a Java message-driven bean (MDB) with an 
javax.ejb.ActivationConfigProperty maxSession configuration of one. This guarantees that 
only a single instance of the MDB is running and therefore only one job at a time is being 
executed.  

Workflow jobs are submitted to the javax.jms.Queue by UUID. Their corresponding 
WorkflowInstance objects containing the processing logic and data payload are 
requested by the batch processor from the WorkflowManager when operated upon. 
Submitted WorkflowInstances are processed in a FIFO order and executed by the 
blocking onMessage operation of the implementing class.  

The workflow is processed per DigitalObjects and intermediate results as well as progress 
information is reported back to the WorkflowManager. The second code snippet in the 
appendix shows the batch processor’s onMessage implementation. 

4.2.7 Logging Workflow Results 

In order to trace and exchange information which is being created during a workflow 
execution in a structured way the classes 
eu.planets_project.ifr.core.wee.api.workflow.WorkflowResult and 
WorkflowResultItem are provided.  



Project: IST-2006-033789 Planets                 Deliverable: IF-D11 

Page 22 of 26  

They allow to trace changes per digital object throughout the entire workflow i.e. all 
service operations which took place on a given object, extracted outcomes (as 
identification information or migrated output object references), general process 
information on the workflow itself (e.g. did the workflow succeed properly on all steps of 
the workflow, workflow execution time) and service calls (e.g. service reports, -endpoint 
and –description), together with any general log information. These classes additionally 
write to a custom ReportingLog which allows debugging in case of a system crash or 
failure.  

4.2.8 Utility Wrappers 

Although workflows are specific in their individual functionality there is a set of basic 
operation patterns that are common to almost all cases. For those operations the WEE 
contains so called ‘job wrappers’, which can easily be reused. 

• Migration Utility Wrapper: A provided migration workflow utility is able to take 
care of the most common migration behaviour as logging proper workflow result 
statements, persisting digital objects in the default data registry and returning 
objects as shared data registry URIs as well as creating default events of the 
preservation action for the digital object at hand. 

• Log-Reference Creator Utility Wrapper: Assembles all created log-statements and 
creates a globally accessible workflow log file for the processed template. 

4.3 Usage Samples 
Implementations of existing workflow templates have been provided throughout the 
project and are used by applications as the Planets Testbed, Plato and the Workflow Design 
Tool. 

The sample workflow implementation in the appendix is provided by the Planets Testbed 
for performing a migration from format A to B and B to C, where format A (and output of 
C) is automatically determined by a preceding identification service. For post-migration 
analysis this workflow calls a comparison service to check on the similarity between 
objects A and C and documents that information within the workflow’s results.  

Further workflow examples and their corresponding sample configuration are available 
within the Planets IF_SP SVN repository (see http://gforge.planets-
project.eu/gf/project/if_sp/components/wee/src/main/resources/eu/planets_project/ifr/core/
wee/impl/templates). 

http://gforge.planets-project.eu/gf/project/if_sp/components/wee/src/main/resources/eu/planets_project/ifr/core/wee/impl/templates
http://gforge.planets-project.eu/gf/project/if_sp/components/wee/src/main/resources/eu/planets_project/ifr/core/wee/impl/templates
http://gforge.planets-project.eu/gf/project/if_sp/components/wee/src/main/resources/eu/planets_project/ifr/core/wee/impl/templates


Project: IST-2006-033789 Planets                 Deliverable: IF-D11 

Page 23 of 26  

5. Appendix 

5.1 Workflow Configuration 
<?xml version="1.0" encoding="UTF-8"?> 
<workflowConf xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="planets_wdt.xsd"> 
  <template> 
    <class>eu.planets_project.ifr.core.wee.impl.templates.TestbedShowcaseOnImageComparisonTemplate_v1_05022010</class> 
  </template> 
  <services> 
  <service id="identifyFormatA"> 
      <endpoint>http://testbed.planets-project.eu:80/pserv-pa-sanselan/SanselanIdentify?wsdl</endpoint> 
    </service> 
    <service id="migrateAB"> 
      <endpoint>http://testbed.planets-project.eu:80/pserv-pa-imagemagick/ImageMagickMigrate?wsdl</endpoint> 
      <parameters> 
        <param> 
          <name>planets:service/migration/input/migrate_to_fmt</name> 
          <value>planets:fmt/ext/jpeg</value> 
        </param> 
        <!-- Specify 5 for JPEG Compression, comprQuality 80 percent --> 
        <param> 
          <name>compressionType</name> 
          <value>5</value> 
        </param> 
        <param> 
          <name>compressionQuality</name> 
          <value>80</value> 
        </param> 
      </parameters> 
    </service> 
    <service id="migrateBC"> 
      <endpoint>http://testbed.planets-project.eu:80/pserv-pa-imagemagick/ImageMagickMigrate?wsdl</endpoint> 
      <parameters> 
        <param> 
          <name>planets:service/migration/input/migrate_from_fmt</name> 
          <value>planets:fmt/ext/jpeg</value> 
        </param> 
        <!-- Specify 5 for JPEG Compression, comprQuality 80 percent --> 
        <param> 
          <name>compressionType</name> 
          <value>5</value> 
        </param> 
        <param> 
          <name>compressionQuality</name> 
          <value>80</value> 
        </param> 
      </parameters> 
    </service> 
    <service id="compareAC"> 
      <endpoint>http://testbed.planets-project.eu:80/pserv-pa-java-se/JavaImageIOCompare?wsdl</endpoint> 
    </service> 
  </services> 
</workflowConf> 

5.2 Batch Processor 
/* @see javax.jms.MessageListener#onMessage(javax.jms.Message) */ 
public void onMessage(Message m) { 
  // check if message got redelivered before doing any processing 
  try { 
    if (m.getJMSRedelivered()) { 
      log.debug("WorkflowExecutionEngine: onMessage: re-receive message from the queue. Not processing 
it"); 
      return; 
    } 
  } catch (JMSException e) { 
    log.debug(e); 
  } 
  // 1) get the WEEManager instance - required in the same JVM 
  WeeManager weeManager = WeeManagerImpl.getWeeManagerInstance(); 
  // 2) extract the Message's payload 
  WorkflowInstance wf = null; 
  UUID uuid = null; 
  try { 
    TextMessage msg = null; 
    if (m instanceof TextMessage) { 
      msg = (TextMessage) m; 
      log.debug("WorkflowExecutionEngine: received ObjectMessage at timestamp: " 
          + msg.getJMSTimestamp()); 
    } 
    // for ObjectMessages: uuid = UUID.fromString(msg.getStringProperty("UUID")); 
    uuid = UUID.fromString(msg.getText()); 
    /* WorkflowInstance object cannot be Serialized due to the 
     * org.jboss.ws.core.jaxws.client.ClientProxy it contains that cannot be serialized. Therefore 
     * a callback to the weeManager for fetching this object is performed. Not possible: wf = 
     * (WorkflowInstance)msg.getObject(); */ 
    wf = ((WeeManagerImpl) weeManager).getWorkflowInstance(uuid); 
  } catch (Exception e) { 
    log.error("WorkflowExecutionEngine: error receiving message workflow payload or UUID", e); 
    if (uuid != null) { 
      weeManager.notify(uuid, WorkflowExecutionStatus.FAILED); 
    } 
    return; 
  } 
  // set status for the workflow inISRUNNING 



Project: IST-2006-033789 Planets                 Deliverable: IF-D11 

Page 24 of 26  

  weeManager.notify(uuid, WorkflowExecutionStatus.RUNNING); 
  // 3) executeWorkflow and get WF Result 
  WorkflowResult ret = wf.initializeExecution(); 
  try { 
    log.debug("WorkflowExecutionEngine: start executing wf ID: " + wf.getWorkflowID()); 
    // EXECUTES THE WF INSTANCE 
    List<DigitalObject> payload = wf.getData(); 
    int count = 1; 
    for (DigitalObject digo : payload) { 
      // process the payload item by item - workflowResult appends individual log items 
      ret = wf.execute(digo); 
      count += 1; 
      int progress = (100 / payload.size()) * count; 
      weeManager.notify(uuid, ret, WorkflowExecutionStatus.RUNNING, progress); 
    } 
    ret = wf.finalizeExecution(); 
    log.debug("WorkflowExecutionEngine: completed executing wf ID: " + wf.getWorkflowID()); 
  } catch (Exception e) { 
    log.error("WorkflowExecutionEngine: error running Workflow.execute()", e); 
    // set WeeManagerstatus 'failed' 
    weeManager.notify(uuid, WorkflowExecutionStatus.FAILED); 
    return; 
  } 
  // 4) call WEEManager.notify to report back results and the status 
  weeManager.notify(uuid, ret, WorkflowExecutionStatus.COMPLETED); 
} 

5.3 Workflow Usage Sample 
public class TestbedShowcaseOnImageComparisonTemplate_v1_05022010 extends WorkflowTemplateHelper 
    implements WorkflowTemplate { 
  private Identify identifyFormatA; 
  private Migrate migrateAB; 
  private Migrate migrateBC; 
  private Compare compareAC; 
  private URI processingDigo; 
  /* (non-Javadoc) 
   * @see eu.planets_project.ifr.core.wee.api.workflow.WorkflowTemplate#describe() */ 
  public String describe() { 
    return "This template performs a A-B and B-C migration action, where format of A (and output of C) 
is automatically " 
        + "determined by an Identification service." 
        + "For post-migration-analysis this workflow calls a comparison service to check on similarity 
of A and C (e.g. in terms of PSNR) and documents that information. "; 
  } 
 
  @Override 
  public WorkflowResult initializeExecution() { 
    this.getWFResult().setStartTime(System.currentTimeMillis()); 
    return this.getWFResult(); 
  } 
 
  /* (non-Javadoc) 
   * @see eu.planets_project.ifr.core.wee.api.workflow.WorkflowTemplate#execute() */ 
  @SuppressWarnings( "finally" ) 
  public WorkflowResult execute(DigitalObject dgoA) { 
    // document all general actions for this digital object 
    WorkflowResultItem wfResultItem = new WorkflowResultItem(dgoA.getPermanentUri(), 
        WorkflowResultItem.GENERAL_WORKFLOW_ACTION, System.currentTimeMillis(), 
        this.getWorkflowReportingLogger()); 
    this.addWFResultItem(wfResultItem); 
    wfResultItem.addLogInfo("working on workflow template: " + this.getClass().getName()); 
    // start executing on digital ObjectA 
    this.processingDigo = dgoA.getPermanentUri(); 
    try { 
      // run a pre-Identification service on A to determine it's format 
      wfResultItem.addLogInfo("starting identification A"); 
      URI formatA = identifyFormat(identifyFormatA, dgoA.getPermanentUri()); 
      wfResultItem.addLogInfo("completed identification A"); 
      // Migrate Object round-trip 
      wfResultItem.addLogInfo("starting migration A-B"); 
      URI dgoB = runMigration(migrateAB, dgoA.getPermanentUri(), formatA, null, false); 
      wfResultItem.addLogInfo("completed migration A-B"); 
      wfResultItem.addLogInfo("starting migration B-C"); 
      URI dgoC = runMigration(migrateBC, dgoB, null, formatA, true); 
      wfResultItem.addLogInfo("completed migration B-C"); 
      // compare the object's A and C 
      wfResultItem.addLogInfo("starting comparison A-C"); 
      runComparison(compareAC, dgoA.getPermanentUri(), dgoC); 
      wfResultItem.addLogInfo("completed comparison A-C"); 
      wfResultItem 
          .addLogInfo("successfully completed workflow for digitalObject with permanent uri:" 
              + processingDigo); 
      wfResultItem.setEndTime(System.currentTimeMillis()); 
    } catch (Exception e) { 
      String err = "workflow execution error for digitalObject #" + " with permanent uri: " 
          + processingDigo; 
      wfResultItem.addLogInfo(err + " " + e); 
      wfResultItem.setEndTime(System.currentTimeMillis()); 
    } 
    return this.getWFResult(); 
  } 
 



Project: IST-2006-033789 Planets                 Deliverable: IF-D11 

Page 25 of 26  

  /** {@inheritDoc} */ 
  public WorkflowResult finalizeExecution() { 
    this.getWFResult().setEndTime(System.currentTimeMillis()); 
    LogReferenceCreatorWrapper.createLogReferences(this); 
    return this.getWFResult(); 
  } 
 
  /** 
   * Runs the migration service on a given digital object. It uses the MigrationWFWrapper to call 
   * the service, create workflowResult logs, events and to persist the object within the JCR 
   * repository 
   */ 
  private URI runMigration(Migrate migrationService, URI digORef, URI inputFormat, 
      URI outputFormat, boolean endOfRoundtripp) throws Exception { 
    MigrationWFWrapper migrWrapper = new MigrationWFWrapper(this, this.processingDigo, 
        migrationService, digORef, endOfRoundtripp); 
    // possibly using identification service to determine the input/output format 
    if (inputFormat != null) { 
      migrWrapper.setInputFormat(inputFormat); 
    } 
    if (outputFormat != null) { 
      migrWrapper.setOutputFormat(outputFormat); 
    } 
    // specifying the location where to store migration results 
    migrWrapper.setDataRepository(DataRegistryFactory 
        .createDataRegistryIdFromName("/experiment-files/executions/")); 
    return migrWrapper.runMigration(); 
  } 
 
  /** 
   * Runs the comparison service on two digital objects 
   */ 
  private CompareResult runComparison(Compare compareService, URI digo1Ref, URI digo2Ref) 
      throws Exception { 
    WorkflowResultItem wfResultItem = new WorkflowResultItem(this.processingDigo, 
        WorkflowResultItem.SERVICE_ACTION_COMPARE, System.currentTimeMillis()); 
    this.getWFResult().addWorkflowResultItem(wfResultItem); 
    try { 
      // get all parameters that were added in the configuration file 
      List<Parameter> parameterList; 
      if (this.getServiceCallConfigs(compareService) != null) { 
        parameterList = this.getServiceCallConfigs(compareService).getAllPropertiesAsParameters(); 
      } else { 
        parameterList = new ArrayList<Parameter>(); 
      } 
      wfResultItem.setServiceParameters(parameterList); 
      wfResultItem.setStartTime(System.currentTimeMillis()); 
      // document the endpoint if available - retrieve from WorkflowContext 
      String endpoint = this.getWorkflowContext().getContextObject(compareService, 
          WorkflowContext.Property_ServiceEndpoint, java.lang.String.class); 
      if (endpoint != null) { 
        wfResultItem.setServiceEndpoint(new URL(endpoint)); 
      } 
      ServiceDescription serDescr = compareService.describe(); 
      wfResultItem.setServiceDescription(serDescr); 
      // retrieve the digital objects from their data registry location 
      DigitalObject digo1 = this.retrieveDigitalObjectDataRegistryRef(digo1Ref); 
      DigitalObject digo2 = this.retrieveDigitalObjectDataRegistryRef(digo2Ref); 
      // now call the comparison 
      CompareResult compareResult = compareService.compare(digo1, digo2, parameterList); 
      wfResultItem.setEndTime(System.currentTimeMillis()); 
      ServiceReport report = compareResult.getReport(); 
      // report service status and type 
      wfResultItem.setServiceReport(report); 
      if (report.getType() == Type.ERROR) { 
        String s = "Service execution failed: " + report.getMessage(); 
        wfResultItem.addLogInfo(s); 
        throw new Exception(s); 
      } 
      // document the comparison's output 
      if ((compareResult.getProperties() != null) && (compareResult.getProperties().size() > 0)) { 
        wfResultItem.addLogInfo("Comparing properties of object A: " + digo1.getPermanentUri() 
            + " with object B: " + digo2.getPermanentUri()); 
        for (Property p : compareResult.getProperties()) { 
          String extractedInfo = "[name: " + p.getName() + " value: " + p.getValue() + " untit: " 
              + p.getUnit() + " description:" + p.getDescription() + "] \n"; 
          wfResultItem.addExtractedInformation(extractedInfo); 
        } 
      } else { 
        wfResultItem.addLogInfo("No comparison properties received"); 
      } 
      wfResultItem.addLogInfo("comparison completed"); 
      return compareResult; 
    } catch (Exception e) { 
      wfResultItem.addLogInfo("comparison failed " + e); 
      throw e; 
    } 
  } 
 
  /** 
   * Runs the identification service on a given digital object reference and returns the first 
   * format that is found. 
   */ 
  private URI identifyFormat(Identify identifyService, URI digoRef) throws Exception { 
    WorkflowResultItem wfResultItem = new WorkflowResultItem(this.processingDigo, 



Project: IST-2006-033789 Planets                 Deliverable: IF-D11 

Page 26 of 26  

        WorkflowResultItem.SERVICE_ACTION_IDENTIFICATION, System.currentTimeMillis()); 
    wfResultItem.setInputDigitalObjectRef(digoRef); 
    this.getWFResult().addWorkflowResultItem(wfResultItem); 
    // get all parameters that were added in the configuration file 
    List<Parameter> parameterList; 
    if (this.getServiceCallConfigs(identifyService) != null) { 
      parameterList = this.getServiceCallConfigs(identifyService).getAllPropertiesAsParameters(); 
    } else { 
      parameterList = new ArrayList<Parameter>(); 
    } 
    // document 
    wfResultItem.setServiceParameters(parameterList); 
    // document the endpoint if available - retrieve from WorkflowContext 
    String endpoint = this.getWorkflowContext().getContextObject(identifyService, 
        WorkflowContext.Property_ServiceEndpoint, java.lang.String.class); 
    if (endpoint != null) { 
      wfResultItem.setServiceEndpoint(new URL(endpoint)); 
    } 
    wfResultItem.setStartTime(System.currentTimeMillis()); 
    // resolve the digital Object reference 
    DigitalObject digo = this.retrieveDigitalObjectDataRegistryRef(digoRef); 
    // call the identification service 
    IdentifyResult identifyResults = identifyService.identify(digo, parameterList); 
    // document 
    wfResultItem.setEndTime(System.currentTimeMillis()); 
    ServiceReport report = identifyResults.getReport(); 
    // report service status and type 
    wfResultItem.setServiceReport(report); 
    if (report.getType() == Type.ERROR) { 
      String s = "Service execution failed: " + report.getMessage(); 
      wfResultItem.addLogInfo(s); 
      throw new Exception(s); 
    } 
    // document the comparison's output 
    URI ret = null; 
    if ((identifyResults.getTypes() != null) && (identifyResults.getTypes().size() > 0)) { 
      wfResultItem.addLogInfo("identifying properties of object: " + digo.getPermanentUri()); 
      for (URI uri : identifyResults.getTypes()) { 
        if (ret == null) { 
          ret = uri; 
        } 
        String extractedInfo = "[uri: " + uri + "] \n"; 
        wfResultItem.addExtractedInformation(extractedInfo); 
      } 
    } else { 
      String s = "Identification failed: format not identified"; 
      wfResultItem.addLogInfo(s); 
      throw new Exception(s); 
    } 
    wfResultItem.addLogInfo("Identification completed, using format: " + ret); 
    return ret; 
  } 
} 


	Technical Architecture
	Overview and Aims
	Variations
	Commonalities
	Consequences

	Common API
	Introduction
	Services
	Service Interfaces
	Service Responses
	Service Implementation
	Being Planets services
	Using Planets services


	Service Descriptions
	Service Registry
	Java API
	SOAP API


	Data
	Digital Objects
	Formats
	Format Registry

	Usage Samples

	Digital Object Model
	Digital Objects
	Content Representation
	Interfaces and Builders

	XML Serialization
	Data Registry
	Java API
	SOAP API


	Workflow Engine
	Introduction
	Components and Interaction
	Workflow Template and Utilities
	Workflow Configuration
	Workflow Factory and Workflow Instance
	WorkflowTemplateRegistry
	WorkflowExecutionManager
	Batch Processor
	Logging Workflow Results
	Utility Wrappers

	Usage Samples

	Appendix
	Workflow Configuration
	Batch Processor
	Workflow Usage Sample


