Planning the Future with Planets
April 14./15. 2008, Vienna, Austria

The Preservation planning workflow

Andreas Rauber
Vienna University of Technology
www.ifs.tuwien.ac.at/~andi
Motivation

- Several preservation strategies developed
- How do you know what is most suitable?
 - Right choice depends on the needs (no clear preferences)
- How to measure and evaluate the results of each preservation strategy?
- What are the requirements?
- How to define a controlled and trusted environment and a procedure for applying or testing preservation strategies?
Preservation Planning

Preservation Planning in Plato

Define requirements
- Define basis
- Choose records
- Identify requirements

Evaluate alternatives
- Go/No-Go
- Define alternatives
- Develop experiment
- Run experiment
- Evaluate experiment

Consider results
- Analyse results
- Set importance factors
- Transform measured values

Preservation Action Recommendation

Build preservation plan
- Create executable preservation plan
- Define preservation plan
- Validate preservation plan

Preservation Plan

Knowledge base

Administration
- Proposals
- Recommendations
- Inventory reports
- Performance info
- Consumer comments

Develop Preservation Strategies and Standards
- Technology alerts
- External data standards
- Prototype results
- Reports

Monitor Designated Community
- Reports
- Requirement alerts
- Emerging standards

Monitor Technology
- Prototype requests
- Product technologies
- Surveys

PRODUCER
PP Workflow

Preservation Planning in Plato

Define requirements
 Define basis
 Choose records
 Identify requirements

Evaluate alternatives
 Go/No-Go
 Define alternatives
 Develop experiment
 Run experiment
 Evaluate experiment

Consider results
 Analyse results
 Set importance factors
 Transform measured values

Preservation Action Recommendation

Build preservation plan
 Create executable preservation plan
 Define preservation plan
 Validate preservation plan

Preservation Plan

Tree templates and fragments
Mapping characteristics to requirements
Knowledge base
Define basis

- What are the objects?
- What are the essential characteristics?
 - Content, context, structure, form and behaviour
- What are the requirements?
 - Authenticity, reliability, integrity, useability
 - Metadata (for different purposes)
- What preservation strategies will be applied and evaluated?
Choose objects/records

- Different object types
 - Text documents, audio, video, e-mail, multimedia, databases, data sets, ...

- Distinction between
 - Physical (technical) object = computer file, and
 - The intellectual object (e.g. what is shown on the screen)

- Choice of objects affects the evaluation
Identify requirements

- Define all relevant goals and characteristics (high-level, detail) with respect to a given application domain

- Usually four major groups:
 - object characteristics (content, metadata ...)
 - record characteristics (context, relations, ...)
 - process characteristics (scalability, error detection, ...)
 - costs (set-up, per object, HW/SW, personnel, ...)

- Put the objects in relation to each other (hierarchical)

- Objective tree approaches:
 - bottom-up
 - top-down
Identify requirements

Analog...

... or born-digital
Identify requirements

Example: video files

Collection preservation

File characteristics
- Appearance
 - e.g. Color-proof, Frame rate,
- Structure
- Behavior
 - e.g. Original compression,
- Integrity
 - e.g. File format verification
- Stability
 - e.g. Durability
- Scalability
 - e.g. Format scalability
- Usability
 - e.g. Complexity, Functionality

Process characteristics

Costs
- Technical
 - e.g. Hardware, Software
- Personnel
 - e.g. Enrolment, Maintenance
Assign measurable units

- Assign measurable effect to each leaf
 - Ensure that leaf criteria are objectively (and automatically) measurable
 - Seconds/Euro per object
 - Bits of color depth
 - ...
 - Subjective scales where necessary
 - diffusion of file format
 - amount of (expected) support
 - ...
- No limitations on the use of scale
Identify Requirements

Objective Tree

<table>
<thead>
<tr>
<th>Focus</th>
<th>Node</th>
<th>Single</th>
<th>Scale</th>
<th>Restriction</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Website</td>
<td>Record characteristics</td>
<td></td>
<td>Ordinal</td>
<td>Ubiquitous/Widespread/Special</td>
<td></td>
</tr>
<tr>
<td>Website</td>
<td>Technical characteristics</td>
<td></td>
<td>Ordinal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Website</td>
<td>Ubiquity</td>
<td></td>
<td>Positive Integer</td>
<td></td>
<td>number of tools</td>
</tr>
<tr>
<td>Website</td>
<td>Support</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Website</td>
<td>Documentation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Website</td>
<td>Stability</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Website</td>
<td>Ease of identification</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Website</td>
<td>Ease of validation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Website</td>
<td>Lossiness</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Website</td>
<td>IPR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Website</td>
<td>Complexity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Website</td>
<td>Endurance</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[How can I define the objective tree?]
PP Workflow

Preservation Planning in Plato

Define requirements
- Define basis
- Choose records
- Identify requirements

Evaluate alternatives
- Go/No-Go
- Define alternatives
- Develop experiment
- Run experiment
- Evaluate experiment

Consider results
- Analyse results
- Set importance factors
- Transform measured values

Preservation Action Recommendation

Build preservation plan
- Create executable preservation plan
- Define preservation plan
- Validate preservation plan

Preservation Plan

Tree templates and fragments
Mapping characteristics to requirements
Knowledge base
Define alternatives

- Given the type of objects and requirements, what strategies would be best suitable/are possible?
 - Migration
 - Emulation
 - Both
 - Other?

- For each alternative precise definition of
 - Which tool (OS, version,...)
 - Which functions of the tool in which order
 - Which parameters
Specify resources

- Detailed design and overview of the resources for each alternative
 - human resources (qualification, roles, responsibility, …)
 - technical requirements (hardware and software components)
 - time (time to set-up, run experiment,…)
 - cost (costs of the experiments,…)

- Diagram of resource planning process.
Go/No-Go

- Deliberate step for taking a decision whether it will be useful and cost-effective to continue the procedure, given:
 - The resources to be spent (people, money)
 - The availability of tools and solutions,
 - The expected result(s).
- Review of the experiment/evaluation process design so far:
 - Is the design complete, correct and optimal?
- Need to document the decision
- If insufficient: can it be redressed or not?
Develop experiment

- Formulate for each evaluation or experiment or preservation process detailed
 - Development plan
 - steps to build and test software components
 - procedures and preparation
 - parameter settings for integrating preservation services
 - Test plan (mechanisms how to)
 - Evaluation/experiment plan (workflow/sequence of activities)
Run experiment

Before conducting an evaluation or running an experiment, the experiment process as designed has to be tested

- It may lead to re-design or even termination of the evaluation/experiment process

- The results will be evaluated in the next stage

- The whole process needs to be documented
Evaluate experiment

- Evaluate the outcome of each alternative for each leaf of the objective tree

- The evaluation will identify:
 - Need for repeating the process
 - Unexpected (or undesired) results

- Includes both technical and intellectual aspects

- Evaluation may include comparing the results of more than one experiment/evaluation.
Transform measured values

- Measures come in seconds, euro, bits, goodness values,…
- Need to make them comparable
- Transform measured values to uniform scale
- Transformation tables for each leaf criterion
- Linear transformation, logarithmic, special scale
- Scale 1-5 plus "not-acceptable"
Set importance factors

- Definition which criteria are more important
- Depends on individual preferences and requirements
- Adaptation for each implementation
- High influence on the final ranking
- Aggregation of weights
Set importance factors

Collection preservation

- File characteristics 50%
 - Appear. 45%
 - Structure 45%
 - Behavior 10%
- Process characteristics 25%
 - Integrity 30%
 - Stability 40%
 - Scalability 10%
 - Usability 20%
- Costs 25%
 - Technical 50%
 - Personnel 50%
Analyse results

- **Aggregate Values**
 - Multiply the transformed measured values in the leaf nodes with the leaf weights
 - Sum up the transformed weighted values over all branches of the tree
 - Creates performance values for each alternative on each of the sub-criteria identified
Analyse results

PLANETS Preservation Planning Tool (*Plato*)

Analyse Results

Aggregation method: Sum

<table>
<thead>
<tr>
<th>Select</th>
<th>Alternative</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PDF/A ToolA</td>
</tr>
<tr>
<td></td>
<td>PDF/A ToolB</td>
</tr>
</tbody>
</table>

Minimalist root node

<table>
<thead>
<tr>
<th>Focus</th>
<th>Name</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Minimalist root node</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>Image properties</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>Karma</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>F lesize (in Relation to Original)</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>A Single-Leaf</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>IntRange 0-10</td>
<td></td>
</tr>
</tbody>
</table>
Analyse results

- Single performance value for each alternative to rank the alternatives
- Single performance values for each alternative for each sub-set of criteria to identify the best combination of alternatives
- Sensitivity Analysis: Analysis of the influence of small changes in the weight on the final value
- Basis for making Informed, well-documented, repeatable, accountable decisions
Analyse results

- Rank alternatives according to overall utility value at root
- Performance of each alternative
 - overall
 - for each sub-criterion (branch)
- Allows performance measurement of combinations of strategies
- Final sensitivity analysis against minor fluctuations in
 - measured values
 - importance factors
Consider results

- The review of the results may help to refine
 - The evaluation process/procedure
 - The preservation planning environment itself
 - The evaluation metrics
 - Understanding of the essential characteristics of the objects,
 - and identify further evaluations, experiments

- The review should take into account all previous work done in the preservation planning environment

- The review should look at both the technical and intellectual aspects of digital objects
Build Preservation Plan

- Create executable elements of preservation plan
 - Sequence of preservation actions to call, parameters, ...
 - Automatic steps + manual interventions where required
 - Automatic verification of results during deployment

- Define preservation plan
 - Create PP based on evidence produced during the PP process
 - Verify completeness of PP

- Seek approval and validation of PP
 - Management activity according to OAIS
 - Sign and deploy
Conclusions

- A simple, methodologically sound model to specify and document requirements
- Repeatable and documented evaluation for informed and accountable decisions
- Set of templates to assist institutions
- Generic workflow that can easily be integrated in different institutional settings

Plato:
Tool support to perform solid, well-documented analyses
- Provides basic preservation plan

http://www.ifs.tuwien.ac.at/dp/plato
Preservation Planning Workflow

Thank you very much for your attention

www.planets-project.eu

rauber@ifs.tuwien.ac.at

www.ifs.tuwien.ac.at/~rauber