

Automated Characterisation framework

Robert Sharpe, Tessella

Automated Characterisation framework

□ Introduction:

- What to characterise?
- Why? When?
- □ How to characterise automatically?
 - File Characterisation:
 - DROID, Jhove etc.
 - Record Characterisation:
 - Role of "components"
 - Role of Technical Registry (PRONOM)

Acknowledgments / Assumptions

- Based on work by Tessella with UK National Archives
 - Part of Seamless Flow programme
 - Automates preservation workflow
- □ Language based on archives:
 - Applies as well to libraries
 - e.g., in use at British Library
- □ Deals mainly with migration:
 - Can be applied to emulation
 - May need some changes?

What to characterise?

□ Record:

Web Site

Characterising Files: Why? When?

□ Why?:

- Are they in obsolete technology?
 - Depends on format of file
 - Can depend on file properties
 - Will trigger preservation action on record

□ When?

- Whenever a new file enters system:
 - At ingest of a record
 - At migration event

Characterising Records: Why? When?

□ Why?

- Discover "essential characteristics"
- Measure these characteristics
- N.B. Will influence file properties to measure
- □ When?
 - At ingest of a record
 - At migration or emulation event

Characterising Files: Multi-step process

- Fully automated process
- □ Step 1 Identification (Find the format):
- □ Step 2 Validate format
- □ Step 3 Extract properties
- □ Step 4 Find embedded objects

Characterising Files: Identification

DROID (Digital Record Object Identification tool)

- □ For each format, holds bytestream signature, e.g.,:
 - Header = 474946383961 (i.e. 010001110100100100 ...)
 - Trailer = 3B (i.e. 00111011)
 - Equates to GIF 1989a
- Can be more complicated: missing bytes, variety of options, floating bytestreams etc.
- □ Information stored in PRONOM
- DROID gets regular updates automatically
- □ Check every file against every format:
 - List matches
 - Normally just one, sometimes a few
 - Use PUIDs to record identification:
 - GIF 1989a = fmt/4

Characterising Files: Validation

- More detailed check against format specification
- Need a tool per format
- □ Ask PRONOM which tool to use:
 - e.g. GIF 1989a, use Jhove
- □ Can update identification, e.g.,:
 - DROID has identical signatures for TIFF3.0 TIFF6.0
 - But validation tool (Jhove) can tell them apart
 - Run 4 tools, get 1 positive result

Characterising Files: Property extraction

□ Again, need a tool per format

□ Again, ask PRONOM which tool to use:

- e.g. GIF 1989a, use Jhove
- □ Also, ask PRONOM which properties to keep:

□ e.g., for GIF 1989a:

- Compression type
- Byte order
- Colour space
- Image width
- Image height
- Bits per sample

Obsolete check Obsolete check Obsolete check Essential characteristic Essential characteristic

Essential characteristic

Characterising Files: Extract embedded objects

□ Again, need a tool per format

□ Again, ask PRONOM which tool to use:

• e.g. ZIP, use unzip

Run tool

□ Characterise these files in turn

Could lead to iteration

Characterising Records: A problem

□ Want to measure essential characteristics:

- e.g. "Must preserve look and feel"
- Descriptive
- Subjective
- High-level
- Difficult to measure
- Very difficult to measure automatically

Characterising Records: Analyse problem

□ Can we break this down?

- "Must preserve look and feel"
 - Should have 3 Web pages
 - Each page should have 1 image
 - Image 1:
 - Height: 70 pixels
 - Width:104 pixels
 - ...
 - Similar for other images...

Characterising Records: Solution

- □ Break records into "components"
- Record links between components
- □ Measure properties for each component
- □ When?
 - At ingest:
 - Identify components and links
 - Measure each component property
 - At migration or emulation event:
 - Check components and links
 - Verify each component property

Characterising records: Solution

Identify Components

- Looks through record and decide what is a component, e.g.,:
 - A Web site consists of a series of HTML pages.
 - Each HTML page references images and documents.
- Build up a "hierarchy" of components with every file associated with a component.
- Record links between components
- □ Measure properties:
 - Ask PRONOM for component properties to measure
 - Measure them:
 - If component = 1 file: usually just look up file property
 - If component >1 file, count (e.g., # images)

Role of Technical Registry (PRONOM)

□ File Characterisation:

- Holds format info
- Holds tools policy: identification, validation, property extraction, embedded object extraction
- Holds property policy: what to measure
- □ Record Characterisation:
 - Holds property info and policy
- □ Preservation planning:
 - Holds format (and property) risks
 - Property tolerance
- □ Migration:
 - Migration pathways, tools etc.

Summary

□ Automated framework:

- Characterise Files
- Characterise Records via Components
- Underpinned by information and policy in Technical Registry

□ Part of automated archival process:

- Provides information for preservation planning
- Validates migration
- E.g., Seamless Flow, UK National Archives:
- □ BUT need:
 - Best practice
 - More tools / better tools / verified tools
 - PLANETS will help...

