

Project Number IST-2006-033789

Project Title Planets

Title of Deliverable Final XCDL Specification

Deliverable Number D7

Contributing Sub-project
and Work-package

PC/2

Deliverable
Dissemination Level

External
Public

Deliverable Nature Report

Contractual Delivery Date 31st May 2008

Actual Delivery Date 31st May 2008

Author(s) HKI – University at Cologne

Abstract

This document describes the status of the XCDL development in May 2008. It contains a reference
to the language, but also an introduction into the creation (and interpretation) of XCDL-documents.
Both parts should also enable the reader to develop XCDL-aware software.

Keyword list

XCDL, XCL, XCEL, PC, Extensible Characterisation Description Language

Project: IST-2006-033789 Planets Deliverable: PC/2-D7

Contributors

Person Role Partner Contribution
Sebastian Beyl Author UzK

Volker Heydegger Contributor UzK Common coactions

Jan Schnasse Contributor UzK Common coactions

Manfred Thaller Contributor UzK Section 5, modelling information

Page 2 of 46

Project: IST-2006-033789 Planets Deliverable: PC/2-D7

EXECUTIVE SUMMARY

The Extensible Characterisation Description language (XCDL) allows the representation of
characteristics extracted from files. The definition of characteristics, however, is taken in the
broadest possible way: So, conceptually, an XCDL representation of the information contained
within a file can be a complete interpretation of all the information contained in that file. While some
of the conceptual implications of this approach are described in this document, presenting the
XCDL as a language for multi-purpose representation of information is not its primary purpose.
That is a description of the XCDL for the purpose it serves within the Planets project: The
representation of the way in which information from one digital object is represented within different
file formats, to allow their comparison during the evaluation of migrations and similar preservation
actions.

Page 3 of 46

Project: IST-2006-033789 Planets Deliverable: PC/2-D7

TABLE OF CONTENTS

1. Introduction ..5

Relationship of this version of the XCDL to the original specification ...5
Main Purpose of the XCDL..6

2. The XCDL-Specification and Examples...7
A First XCDL Document ..7
xcdl (XML-Node)..7
Objects ..8
Object (XML-Node) ...9
objectRef (XML-Node)...9
normData...10
normData (XML-Node) ..11
Properties ..12
Property (XML-Node) ..17
Name (XML-Node) ..18
valueSet (XML-Node)..18
labValue(XML-Node)...18
val (XML-Node) ...19
Type (XML-Node)..19
rawValue (XML-Node)...19
dataRef (XML-Node) ...20
PropertySets..20
propertySet (XML-Node) ...27
valueSetRelations (XML-Node)...27
ref - inside valueSetRelations (XML-Node)...27
dataRef (XML-Node) ...28
ref - inside dataRef (XML-Node) ...28

3. Static XCDL Model...29
4. Final Words for now ...30
5. Modelling information ...31

5.1 Limitations of the current XCL based approach ...31
5.2 Towards an information model for preservation purposes...33
5.3 First sketch of an information model ..34
5.4 Relationship between Planets information model and XCDL ontology..............................34

6. Appendix ..36
XML-Schema XCDLCore.xsd..36
XML-Schema XCDLBasicTypes.xsd...43

7. Reference...46

Page 4 of 46

Project: IST-2006-033789 Planets Deliverable: PC/2-D7

1. Introduction

Relationship of this version of the XCDL to the original specification

The XCDL has been developed to describe a large variety of types of file content. XML was used
as the background-technology. Digital objects can split up into their components and their content
can be saved, represented in the XCD language. To integrate the language smoothly into the
developing world of standards, it is based upon an xml-schema. This allows standard XCDL
documents to be validated without creating new tools.

While splitting the information contained in a file into the categories of its XCDL representation, we
differentiate between “raw” information, so called “normalised data” or “normdata” and the
description of that information, so called ”properties”. The XCDL representation of a file consists of
one or more normdata and properties, which relate to these normdata and define their meaning,
together describing the complete content of the file. XCDL descriptions are always directly related
to files and when we discuss the details of the language, they all pertain to byte and bit sequences.
We will see, however, that any one XCDL description may be related to digital content which is
distributed over more than one file; and there are cases, where the content of a physical file is
structured in such a way, that the XCDL describing it is actually subdivided into a number of XCDL
descriptions, which are almost completely independent of each other. To mark this difference, we
will say in this document that the XCDL may describe digital objects.

This is the reason for the main differences between the structure of the XCDL as described in the
first version of the specification and the specification we present here. In the original version, the
design of the XCDL was very much influenced by the assumption that for one physical file one
distinct XCDL description would be produced.

The current, final specification of the XCDL has been built around an extended understanding of
this relationship: On the one hand, more recent file formats frequently describe a structure, where a
number of physically distinct files are grouped together by all software handling it into one
container, which exists for purposes of data storage and transfer, is unpacked into individual files
for processing however. The meaningful unit of information in such a case is the container, where
the information is stored – and can therefore be preserved; not the individual physical files into
which that information is distributed transiently for ease of processing. In that sense, therefore, the
XCDL description of a permanent file may describe, what transiently is a group of files.

On the other hand, for reasons which are described in more detail in chapter 5 of this document,
the XCDL assumes, that an XCDL document typically describes some data, which belong to a
specific type of data, like an image, a text, a streaming medium etc. This principle has never
hindered to understand, that one such document may contain data of another type, as, e.g., the
textual string containing the copyright information within an image. It has turned out to be
convenient, however, to provide for a more general purpose, by which there is a clear interface
between data objects of different types for cases where, e.g., a XCDL description of a text contains
an XCDL description of an image.

The changes between the first and the current, final, version of the XCDL reflect the consequences
of these two problems. The “composition element” of the original XCDL specification has been
dropped for a more general mechanism to describe the inclusion of XCDLs of one type into XCDLs
of another; to ease the description of embedded objects the original specification of “objRel” nodes
has been replaced by an “objectRef” node, which also shows the direction of the relationship.

The exact specification of the XCDL - and examples for the use of the features thus specified - are
presented in the following sections. The specification presented here is “final” in the sense that it
has the capability to map the content of files in rather complex formats – PDF and OOXML. These
have been sufficiently different from the image formats, which have been the main domain upon
which the first version of the language has been built, to lead to the significant changes mentioned
above. While we assume that the intensified use of the XCDL to describe the content of additional

Page 5 of 46

Project: IST-2006-033789 Planets Deliverable: PC/2-D7

types of files in the future will lead to fewer and less significant changes, even a “final” language
will have to develop further.

Main Purpose of the XCDL
The XCDL has been formulated as a means to give an abstract definition of the content of a file or
a set of files. This is a broad and general goal. It has been pursued, however, not as an abstract
exercise but with an immediate practical purpose in mind, which unavoidably has influenced many
of the individual decisions. XCDL describes the content of digital files. These descriptions are –
within Planets - used to compare two digital representations of one object in two different file
formats in a standardized way. The XCDL is supposed to support and optimize these automatic
comparisons.

These comparisons are performed by a software tool called “comparator”. It should not only do a
comparison as a binary “diff” tool, which answers the question whether some digital objects are
identical with “true or false, ” but it should give a degree of similarity. This makes it possible to
migrate large archives from an old to a new format, control the overall success of that migration
and also calculate the loss of information during migration. The “comparator” calculates this
information loss by matching the properties and normData from a source file to the corresponding
properties and normData of a target file. The summarized degrees of equality between of the
paired normData and properties within the two files define the equality of source and target file.

The XCDL has not been designed as a data format to archive data. We acknowledge, however,
that the idea to convert the content of a file encoded in a contemporary format into a XCDL
document, preserve that document, and reconvert it later into a contemporary format of that later
day, would be a logical extension of the XCDL approach. It will not be pursued within Planets; no
precautions have been considered to make the language more useful for such an approach. On the
other hand, all structures have been designed to make the comparisons of XCDL documents as
easy as possible, even if that may have made some structures more complex than they would have
been, if only the representation of the data on an abstract level would have been attempted.

One, though not the only one, reason for that is, that within Planets the XCDL is supposed to be
able to represent 100 % of the information contained within a file which it represents, it is not
required, however, that it is used in that way. Indeed, the extractor based upon the current
definition of XCDL’s sister language used to describe file formats, implicitly encourages to extract
only parts of the information contained within a file. This is done on the one hand, to be able to
process highly complex file formats, where a complete translation of the file format into XCEL will
take time (PDF, e.g.); on the other hand this shall encourage using the XCDL / XCEL approach
also to handle file formats which are only partially understood.

Page 6 of 46

Project: IST-2006-033789 Planets Deliverable: PC/2-D7

2. The XCDL-Specification and Examples

As already mentioned, the XCDL has been created to allow the representation of as many digital
objects as possible in a standardized way, based upon XML. The formal specification will be
illustrated by small examples showing the usage of the features specified, in the spirit of the
introduction of a language by its handling of “hello, world!”.

A First XCDL Document

As first simple introduction to the XCDL, we like to show how to represent a very simple digital
object in the language. Knowing the basis of the technique will help to understand more complex
usages of the XCDL.

The following text is going to be represented by a XCDL document:

This is only a short text.

There is no further description of the text, no fonts or other format information is indicated or
specified. Therefore a short XCDL document will look the following way:

<?xml version='1.0' encoding='utf-8'?>

<xcdl xmlns:xsi="http://www.planets-project.eu/xcl/schemas/xcl"
xsi:schemaLocation="http://www.planets-
project.eu/xcl/schemas/xcl/XCDLCore.xsd" id="0">

 <object id="o1">

 <normData id="nd1" type="text">This is only a short text.</normData>

 </object>

</xcdl>

As you see, the text is included as a normData node. In turn the normData are surrounded by an
object-node. This indicates that this is a self-contained digital unit. Within this unit no more
information is specified, as the text to be handled did, as mentioned, not contain any formatting
specification, although this is quite unusual for a text format.

Let’s look at the individual XML tags, or nodes, in the XCDL representation:

xcdl (XML-Node)

The xcdl-node is always the root-element of an XCDL-document, but not all digital objects must
necessarily be described by a single xcdl node: If more than one XCDL-document describes a
digital object, each of them have an xcdl-node as the root-node.

This is a child of node:

Page 7 of 46

Project: IST-2006-033789 Planets Deliverable: PC/2-D7

none (root-element)

Attributes:

id - The attribute id is an unique identifier for the xcdl-node and required. Its value is string or an
integer, like all the identifiers of xml-elements of the XCDL we encounter in this document.

Objects

As already shown in the first example, all XCDL represented data are structured as objects. Those
objects represent logical entities. There can be more than one of these logical entities within a
digital document.

It is not always clear, how to separate two digital objects. Some structures can only be described
with the help of a few objects and references between them. XCDL only knows normData and
properties. Properties can be related to normData. But XCDL has no concept of properties directly
related to other properties. For that reason it is necessary to describe, e.g., footnotes as an
independent object. Footnotes can be related to normData, will themselves consist of their own
normData, however, and the properties, describing them.

As it is necessary to establish a relationship between these different objects, the XML-node
object possesses the attribute id. The value of this attribute has to be unique within an XCDL
document.

If you establish a relationship between two objects in this way, one object becomes logically a
property of another.

Later we will give a more detailed explanation of property structures. At the moment lets have a
closer look at the XML-node objectRef . A text with a footnote is described in an XCDL
document as follows:

This is only a short1 text.

1: short is another term for "not long".

<?xml version='1.0' encoding='utf-8'?>

<xcdl xmlns:xsi="http://www.planets-project.eu/xcl/schemas/xcl"
xsi:schemaLocation="http://www.planets-
project.eu/xcl/schemas/xcl/XCDLCore.xsd" id="0">

 <object id="o1">

 <normData id="nd1" type="text">This is only a short1 text.</normData>

 <property id="p1" source="raw" cat="descr">

 <name id="id170">footnote</name>

 <valueSet id="vs1">

 <objectRef>.:02</objectRef>

 </valueSet>

Page 8 of 46

Project: IST-2006-033789 Planets Deliverable: PC/2-D7

 </object>

 <object id="o2">

 <normData id="nd2" type="text">1: short is another term for "not
long".</normData>

 </object>

</xcdl>

This document can not be validate against the XML-Schema of the XCDL, as, for clarity’s sake
some required elements are absent in this example; these will be explained later. But even in the
simplified version you can see that there is a property within the first object with the identifier o1,
which is called footnote. Furthermore there exists a node objectRef within this property.
This refers to the object o2. This object is shown later in the file.

The notation .:o2 describes that there is an object with the identifier o2 to be found in this file.
Another file can be specified like this: file://otherFile.xcdl:o2. In this case the object
with identifier o2 would be found in the file otherFile.xcdl.

Such assemblies of properties will be explained later in detail, as will be the usage of the
valueSet. There is an important point to note about this kind of connection of objects. The
function of the linked object is not defined by this object itself but by the property to which it is
assigned, in this case called 'footnote'. This separation between the definition of an object and the
interpretation of its usage is also the reason why an object can be used several times within an
XCDL document, each time in a different function.

Object (XML-Node)

The XML-node 'object' represents a logical information unit. These units are built by reading and
interpreting the original files. In any one XCDL document there can be may objects.

This is a child of the node:

xcdl

Attributes:

id - The attribute id is an unique identifier for the xcdl-node and required. Its value is string or
an integer, like all the identifiers of xml-elements of the XCDL we encounter in this document.

objectRef (XML-Node)

The xml-node objectRef references another object, contained within the same or another XCDL
document. The string contained within the <objectRef> Tag specifies the location of the related
object.

This is a child of the node:

valueSet

Page 9 of 46

Project: IST-2006-033789 Planets Deliverable: PC/2-D7

Attributes:

none

Syntax of the reference within the tag:

A path to the related object, which follows the syntax: (file://.*|\.):.* The first describes a
protocol, in our case always file://, the second fragment is a file or a period point for the file
currently being processed, the third fragment is the id for the related object. So
“file://otherFile.xcdl:o2” stands for the object “o2” within the xcdl document
“otherFile.xcdl”. “.:o2” would refer to object “o2” within the current file.

normData

As already shown in the first example normData contain basic information derived form a file, which
is specified further by properties. They do not change, when only the properties describing them
change. The following text is another short example:

This is only a short text.

The text occurs in normData like this:

<?xml version='1.0' encoding='utf-8'?>

<xcdl xmlns:xsi="http://www.planets-project.eu/xcl/schemas/xcl"
xsi:schemaLocation="http://www.planets-
project.eu/xcl/schemas/xcl/XCDLCore.xsd" id="0">

 <object id="o1">

 <normData id="nd1" type="text">This is only a short text.</normData>

 </object>

</xcdl>

If you change properties of the text, it might look like this:

This is only a short text.

The normData are not affected by this change of properties. The XCDL representation if the
normData remains unchanged, even though some aspects of the text have obviously changed. The
same principle of separation between a basic stream of data, contained within the normData and
their properties applies for pictures. The normData in this case contain the uninterpreted values of
each individual pixel.

It is not always easy to differentiate between normData and their properties. If a word within a text
has been crossed out, the meaning, to be communicated by the text, has changed drastically. That
part of the text has been crossed out, will nevertheless not be reflected by the normData. Even
crossed out text is considered as and will be treated as text. Its representation, described by an
appropriate property, will not influence, whether it is part of the normData or not.

Similarly footnotes - from the previous example - create an interpretative problem. A footnote could
appear like this in a source format, that shall be transformed into XCDL:

Page 10 of 46

Project: IST-2006-033789 Planets Deliverable: PC/2-D7

<text>This is a new<footnote>new is related to an earlier
document</footnote> text.</text>

This rendered text in an editor will look like this:

This is a new1 text.

1: new is related to an earlier document

Indeed the footnote can be shown like this:

This is a new1 text.

1- new is related to an earlier document

There was only a change of the separator between the character 1 and the text. But is this text still
a part of the normData? Not necessarily: If the character separating footnote counter and footnote
text is clearly defined as an abstract property, of the text as a whole, by the format specification, it
will not be considered part of the normData.

In the same way the source file could contain:

This is a new2 text.

2- new is related to an earlier document

The counter of the footnote changed to 2, presumably because another footnote was added in an
earlier part of the text. The same could, however, also have happened, because by the selection of
another text-style or another paper size, a footnote happened to be transferred from one page to
another during layout. In cases, where the layout is determined by the software formatting the text,
and resulting details like the footnote counter used are not contained within the permanent part of a
textual file, these details will not become part of the normData.

normData (XML-Node)

The <normData> element inside the XML-Node contains the basic, uninterpreted data of a file. For
text files, that is a sequence of UTF-8 characters; for images it is a sequence of byte values. They
reflect no interpretation of such uninterpreted data by the software which is interpreting the file
format from which a XCDL document containing these normData has been derived.

This is a child of the node:

object

Attributes:

Page 11 of 46

Project: IST-2006-033789 Planets Deliverable: PC/2-D7

id - This is the mandatory identifier of the normData node which must be unique within the object
containing the normData node, and should be unique within the XCDL-document, containing the
document.

type - This attribute is required and describes the basic type of information within the text-node of
the normData-Node. Only the following types are allowed: text, image, audio, object and
other. For current purposes the first four of these types are sufficient; if support of other basic
types will be added, we propose rather more to add additional appropriate types than using “other”
indiscriminately.

Properties

The plain text of a text document or the pixel values of an image are not sufficient to describe the
contents of a file containing such information. The information about how these basic data are to be
interpreted has also to be extracted. XCDL solves this problem with the aid of properties.

A XCDL property is the description of the value an abstract characteristic of some data takes within
a specific file. We could also say, that properties describe which values of a potential characteristic
shall be applied to which part of the uninterpreted data. We can demonstrate this by looking at the
representation of the fact that part of a text is to be displayed in italics:

This is a sentence with a few italic words.

Leaving aside the normData for the moment, the property 'italic' appears within the XCDL
like this:

<?xml version='1.0' encoding='utf-8'?>

<xcdl xmlns:xsi="http://www.planets-project.eu/xcl/schemas/xcl"
xsi:schemaLocation="http://www.planets-
project.eu/xcl/schemas/xcl/XCDLCore.xsd" id="0">

 <object id="o1">

 <property id="p1">

 <name id="id162">italic</name>

 </property>

 </object>

</xcdl>

Inside of the object o1 we have now property with its identifier exists, in this case p1. This
representation is not very useful so far, as it just says that something in the file described by this
XCDL fragment is in italics, without specifying what that something is. To solve this and connect
the property 'italic' to a specific section of the normData, we use:

<?xml version='1.0' encoding='utf-8'?>

<xcdl xmlns:xsi="http://www.planets-project.eu/xcl/schemas/xcl"
xsi:schemaLocation="http://www.planets-
project.eu/xcl/schemas/xcl/XCDLCore.xsd" id="0">

 <object id="o1">

Page 12 of 46

Project: IST-2006-033789 Planets Deliverable: PC/2-D7

 <normData id="nd1" type="text">This is a sentence with a few italic
words.</normData>

 <property id="p1">

 <name id="id162">italic</name>

 <valueSet id="vs1">

 <labValue>

 <val>default</val>

 <type>XCLLabel</type>

 </labValue>

 <dataRef ind=”normSpecific” propertySetId=”ps1” />

 </valueSet>

 </property>

 <propertySet id="ps1">

 <valueSetRelations>

 <ref valueSetId=”vs1” />

 </valueSetRelations>

 <dataRef>

 <ref begin=”24” end=”35” id=”nd1” />

 </dataRef>

 </propertySet>

 </object>

</xcdl>

In this complete example, the normData are back, our sentence is now included a normData- node
node of type 'text' identified as nd1. Second, the property has been augmented by an XML-node
called valueSet. At this point, it is not important why we do this, we will explain it later in this
chapter. More important is the dataRef-Node, which contains one or two attributes. If the
attribute ind is set to the value 'global', the valueSet and with it the parent-node property will
be linked to the whole normData of this object. If, for example, the whole document is written in
italic, you will have made this clear by using the attribute ind with the value global.

If you have to apply the property to a short sequence of the normData only, it is a little bit more
complicated. In an earlier version of the XCDL you were allowed to use offsets into the content of
the normData indicate the points where the application of a property should start and stop. And the
conceptual notion, that properties relate from a given offset within the normData to another one, is
still useful. To understand what is happening, you can simply glimpes at the <dataRef> element
and assume, that its 'begin' and 'end' attributes define to which part of the normData string the
property in question has to be applied. While this solution would be intuitive, it leads, unfortunately
to problems with more complex formats.

Therefore you are required now to bind a property first into a propertySet and connect only this
propertySet to a part of the normData. The propertySet is simply created by opening a XML-node
called propertySet, identified as ps1 in this example. As you can see in the dataRef-structure of the
valueSet, which we mentioned already, this identification is used to link from a valueSet to a
propertySet. Reversely, the propertySet also links to the valueSet itself, opening a valueSet-Node
and collecting all used valueSets by storing their identifiers in an attribute valueSetId inside a XML-
Node ref. With this technique, you are able to define a set of properties within a logical unit.

Page 13 of 46

Project: IST-2006-033789 Planets Deliverable: PC/2-D7

Finally, you have to connect this collection to one or more normData-sections or parts of such. For
this, you have to create the XML-node dataRef, in which you can now collect ref-nodes. These
ref-nodes, in our example only one, have to link to a normData-identifier and a beginning and an
ending offset. The offset is a simple count of characters within the normData starting with 0 for the
first sign.

Having put all together, we now have a giant construct for just one single property 'italic', applied to
just one short sequence of characters within the normData-string. Please remember that the XCDL
is not designed for being primarily humanly readable, but is assumed to be processed by software.
And, in the next sections we will show, that this way of handling properties can easily be
generalised for considerably more complex constructs.

As indicated, the next step will show you, why we are using the valueSet-nodes and not binding the
property to a propertySet directly. The next example will make this clearer. In it, there is only one
word in our normData, but as you can see, many font sizes are used.

oneWordButManyFontSizes

The font size grows up from 12 points to 22 points. But though there are six different font sizes,
these are only six occurrences of one and the same property. So every valueSet in the next
example stands for one occurrence of the property fontSize.

<?xml version='1.0' encoding='UTF-8'?>

<xcdl xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns="http://www.planets-project.eu/xcl/schemas/xcl"

xsi:schemaLocation="http://www.planets-project.eu/xcl/schemas/xcl

XCDLCore.xsd" id="0" >

 <object id=”o1”>

 <normData id="nd1" type="text">OneWordButManyFontSizes</normData>

 <property id=”p1” source=”raw” cat=”descr”>

name id="id158">fontSize</name>

 <valueSet id=”vs1”>

 <labValue>

 <val unit=”point”>12</val>

 <type>rational</type>

 </labValue>

 <dataRef ind=”normSpecific” propertySetId=”ps1” />

 </valueSet>

 <valueSet id=”vs2”>

 <labValue>

 <val unit=”point”>14</val>

 <type>rational</type>

 </labValue>

 <dataRef ind=”normSpecific” propertySetId=”ps2” />

 </valueSet>

 <valueSet id=”vs3”>

Page 14 of 46

Project: IST-2006-033789 Planets Deliverable: PC/2-D7

 <labValue>

 <val unit=”point”>16</val>

 <type>rational</type>

 </labValue>

 <dataRef ind=”normSpecific” propertySetId=”ps3” />

 </valueSet>

 <valueSet id=”vs4”>

 <labValue>

 <val unit=”point”>18</val>

 <type>rational</type>

 </labValue>

 <dataRef ind=”normSpecific” propertySetId=”ps4” />

 </valueSet>

 <valueSet id=”vs5”>

 <labValue>

 <val unit=”point”>20</val>

 <type>rational</type>

 </labValue>

 <dataRef ind=”normSpecific” propertySetId=”ps5” />

 </valueSet>

 <valueSet id=”vs6”>

 <labValue>

 <val unit=”point”>22</val>

 <type>rational</type>

 </labValue>

 <dataRef ind=”normSpecific” propertySetId=”ps6” />

 </valueSet>

 </property>

 <propertySet id=”ps1”>

 <valueSetRelations>

 <ref valueSetId=”vs1” />

 </valueSetRelations>

 <dataRef>

 <ref begin=”0” end=”2” id=”nd1” />

 </dataRef>

 </propertySet>

 <propertySet id=”ps2”>

 <valueSetRelations>

 <ref valueSetId=”vs2” />

 </valueSetRelations>

 <dataRef>

Page 15 of 46

Project: IST-2006-033789 Planets Deliverable: PC/2-D7

 <ref begin=”3” end=”6” id=”nd1” />

 </dataRef>

 </propertySet>

 <propertySet id=”ps3”>

 <valueSetRelations>

 <ref valueSetId=”vs3” />

 </valueSetRelations>

 <dataRef>

 <ref begin=”7” end=”9” id=”nd1” />

 </dataRef>

 </propertySet>

 <propertySet id=”ps4”>

 <valueSetRelations>

 <ref valueSetId=”vs4” />

 </valueSetRelations>

 <dataRef>

 <ref begin=”10” end=”13” id=”nd1” />

 </dataRef>

 </propertySet>

 <propertySet id=”ps5”>

 <valueSetRelations>

 <ref valueSetId=”vs5” />

 </valueSetRelations>

 <dataRef>

 <ref begin=”14” end=”17” id=”nd1” />

 </dataRef>

 </propertySet>

 <propertySet id=”ps6”>

 <valueSetRelations>

 <ref valueSetId=”vs6” />

 </valueSetRelations>

 <dataRef>

 <ref begin=”18” end=”22” id=”nd1” />

 </dataRef>

 </propertySet>

 </object>

</xcdl>

As you can see, every valueSet represents one occurrence of the abstract property. The
description of this occurrence is given by the labValue-Node, in which the two XML-nodes val
and type with their attributes and values store the values which differentiate this valueSet from

Page 16 of 46

Project: IST-2006-033789 Planets Deliverable: PC/2-D7

the others of the same basic property. Every valueSet is bound to a propertySet, every
propertySet links to a short sequence inside the normData-Node. With this construct, it is
much more simple for a program like the "comparator" not only to handle the occurrences of
different properties but also of their values.

The labValue-node with its XML-nodes val and type has to be explained: The value-node
describes a simple value. Different file formats use many different units. Because of this, we have
decided not to try to map all units onto one "basic-unit", but to store the unit itself in an attribute
called 'unit'. This attribute is an enumeration restricted to bit, twip, pixel, inch, meter,
palette and point an enumeration which presumably will have to be augmented in the future.

The XML-node 'type' with its text-node describes the base type, upon which a program can base
its selection of the metrics to do statistical calculations with this property or valueSet. In our
example, the text-node is set to rational. For the "comparator" this means, that it can use
metrics giving more precise results, than a simple 'true' or 'false' for the comparison of this property
between two XCDL documents. But the XML-node 'type' is also the place to specify other basic
characteristics of the normData. Its group-attribute is used to tell programs, that the normData-
section to which it is related has to be interpreted in groups of bytes with the length specified by
this attribute. For example, if you read pixel-data from an image, in some cases one pixel is
described by three colour-values, in other cases by four colour-values. The group-attribute tells the
"comparator", how many normData-bytes are to be used for one basic unit, one pixel in this case.

If you remember object-references and the usage of properties and propertySets, it should now be
clear that and how objects can also be used as properties.

Property (XML-Node)

The XML-node 'property' is a container where information can be accumulated, which can describe
normData, an object or the whole XCDL. The informations are saved in other XML-nodes within the
container. The property itself is not very complex.

This is a child of the node:

object

Attributes:

id - This is the mandatory and unique identifier for a property inside an object. It is recommended
to make ids unique within the whole XCDL document.

source - This is an optional attribute indicating where the property has been derived from.
Possible values are raw, implicit and added. In most cases, the value raw is set to show the
property is read from the file directly. But if you think about the comparison of two files from
different format specification, it is possible, that the same information is given in two files, but one
file contains an explicit specification of a property, while the other does not so, as the specification
of its format says that all files of this format share this property. In these cases, where properties
are implicitly set by the format specification of the source file, the attribute 'source' is implicit. If
the property is given neither by the format specification nor the file itself, but derived during
processing, the attribute source is set to 'added'. An example for this is the file size, or
reconstructed data.

cat - This optional attribute categorizes the property. For most cases, cat is set to descr. The
property describes a part of the normData or the object. If cat is set to hist, historical data are
stored in the property, for example a special compression algorithm used in this context. The value
cont for the attribute cat stands for relating the property to a byte sequence directly. The last

Page 17 of 46

Project: IST-2006-033789 Planets Deliverable: PC/2-D7

possible value is extern for holding information about special hardware, software or other
environmental settings, in which the original file was created.

Name (XML-Node)

This node within the XML-node name gives the property a mnemonic name, for example fontSize
or italic. If you want to describe the name more explicit and in more than one shape, you have to
use a valueSet.

This is a child of the node:

property

Attributes:

id - This mandatory attribute is NOT an identifier for the occurrence of the XML-node name, but
for the name itself. It is currently defined within the appropriate namesLib and will be derived from
the XCDL1 ontology in the future.

alias - This optional attribute was created for storing information about the name of the property
in the format specification of the source file. If you think about "image-width" and "image-length",
these would be mapped to the same property in the XCDL document, might have been different
within a source format, however. You are able to store this information for greater transparency of
the process.

valueSet (XML-Node)

The XML-node valueSet is a container for more information about occurrences of a property.

This is a child of the node:

property

Attributes:

id - The id is a mandatory and unique identifier of this valueSet. Because this id is used
outside the property, it has to be unique within the whole object.

labValue(XML-Node)

The XML-node labValue is a container for a pair consisting of one XML-node val and one XML-
node type.

This is a child of the node:

valueSet

1 See Planets deliverable PC/2 – D9

Page 18 of 46

Project: IST-2006-033789 Planets Deliverable: PC/2-D7

Attributes

none

val (XML-Node)

The XML-node val stores information about the value of an occurring property. Because we do
not want to map different units of measurement to one basic one, the attribute 'unit' specifies which
one has been used in the original file, allowing correct use of the numeric values within the
comparison-metrics. The element <val> has a numeric or string value.

This is a child of the node:

labValue

Attributes:

unit - With the attribute unit you will be able to bind a unit to the value of the element <val>.
This attribute is optional. You can choose between bit, twip, pixel, inch, meter, palette
and point.

Type (XML-Node)

The XML-node type gives you information about the type of the variable, used in the
corresponding XML-node val. Like the unit-attribute in the XML-node val, for better
possibilities of interpretation and selecting the appropriate metrics in comparisons of different
occurrences of that property in different files..

This is a child of the node:

labValue

Attributes:

group - This optional attribute stores the information about how many bytes of the linked
normData describe one basic unit of these data. It expects an integer value. If it is not set, the
value 1 is assumed.

Allowed values:

int, rational, string, XCLLabel for enumerations, bool and time as defined in ISO
8601.

rawValue (XML-Node)

Usage of this XML-node is optional. It is not illustrated and not shown in the property example
above. The rawValue of a valueSet is the representation of the underlying "original" data, as
read from the file. The only allowed change against what has been read from the file are
conversions from the encoding of the file to UTF-16 for character data and to hexadecimal
encoding for binary data. The binary data are stored as value of this XML element.

Page 19 of 46

Project: IST-2006-033789 Planets Deliverable: PC/2-D7

This is a child of the node:

labValue

Attributes:

none

dataRef (XML-Node)

With the XML-node dataRef, the whole valueSet that contains it is bound to a
propertySet, as described in detail below. By default, the valueSet links to all normData in
the same object.

This is a child of the node:

valueSet

Attributes:

ind - There are three valid values for the required attribute ind: none, normSpecific and
global. With normSpecific, it is necessary to use the attribute propertySetId. Later,
inside the linked propertySet, this property is applied to a specific sequence of the normData.
If the attribute is global, this occurrence of the property is applied to all normData within this
object. If the attribute is none, the valueSet is used without a relationship to any normData.

propertySetId - This attribute is required, if the attribute ind is set to normSpecific. It stores the id
of the properySet it is linked to.

PropertySets

If you take a closer look at text-formats, you will find different possibilities to bind properties to the
normData. Every text-attribute can be applied separately of all others to a text. This is important
when different text-attributes overlap each other.

This is a new short sentence.

As you can see, the words new short are written bold, the words short sentence are italic.
This can be expressed in XCDL in different ways. In the following, propertySets will be used to
map valueSets to the normData:

<?xml version='1.0' encoding='utf-8'?>

<xcdl xmlns:xsi="http://www.planets-project.eu/xcl/schemas/xcl"
xsi:schemaLocation="http://www.planets-
project.eu/xcl/schemas/xcl/XCDLCore.xsd" id="0">

 <object id="o1">

 <normData id="nd1" type="text">This is a new short
sentence.</normData>

 <property id="p1">

Page 20 of 46

Project: IST-2006-033789 Planets Deliverable: PC/2-D7

 <name id="id161">bold</name>

 <valueSet id="vs1">

 <labValue>

 <val>default</val>

 <type>XCLLabel</type>

 </labValue>

 <dataRef ind=”normSpecific” propertySetId=”ps1” />

 </valueSet>

 </property>

 <property id="p2">

 <name id="id162">italic</name>

 <valueSet id="vs2">

 <labValue>

 <val>default</val>

 <type>XCLLabel</type>

 </labValue>

 <dataRef ind=”normSpecific” propertySetId=”ps2” />

 </valueSet>

 </property>

 <propertySet id="ps1">

 <valueSetRelations>

 <ref valueSetId=”vs1” />

 </valueSetRelations>

 <dataRef>

 <ref begin=”10” end=”18” id=”nd1” />

 </dataRef>

 </propertySet>

 <propertySet id="ps2">

 <valueSetRelations>

 <ref valueSetId=”vs2” />

 </valueSetRelations>

 <dataRef>

 <ref begin=”14” end=”27” id=”nd1” />

 </dataRef>

 </propertySet>

 </object>

</xcdl>

But it is also possible to understand propertySets as borders and containers for normData-areas
with different combinations of properties.

<?xml version='1.0' encoding='utf-8'?>

Page 21 of 46

Project: IST-2006-033789 Planets Deliverable: PC/2-D7

<xcdl xmlns:xsi="http://www.planets-project.eu/xcl/schemas/xcl"
xsi:schemaLocation="http://www.planets-
project.eu/xcl/schemas/xcl/XCDLCore.xsd" id="0">

 <object id="o1">

 <normData id="nd1" type="text">This is a new short
sentence.</normData>

 <property id="p1">

 <name id="id161">bold</name>

 <valueSet id="vs1">

 <labValue>

 <val>default</val>

 <type>XCLLabel</type>

 </labValue>

 <dataRef ind=”normSpecific” propertySetId=”ps1” />

 <dataRef ind=”normSpecific” propertySetId=”ps2” />

 </valueSet>

 </property>

 <property id="p2">

 <name id="id162">italic</name>

 <valueSet id="vs2">

 <labValue>

 <val>default</val>

 <type>XCLLabel</type>

 </labValue>

 <dataRef ind=”normSpecific” propertySetId=”ps2” />

 <dataRef ind=”normSpecific” propertySetId=”ps3” />

 </valueSet>

 </property>

 <propertySet id="ps1">

 <valueSetRelations>

 <ref valueSetId=”vs1” />

 </valueSetRelations>

 <dataRef>

 <ref begin=”10” end=”12” id=”nd1” />

 </dataRef>

 </propertySet>

 <propertySet id="ps2">

 <valueSetRelations>

 <ref valueSetId=”vs1” />

 <ref valueSetId=”vs2” />

 </valueSetRelations>

 <dataRef>

Page 22 of 46

Project: IST-2006-033789 Planets Deliverable: PC/2-D7

 <ref begin=”14” end=”18” id=”nd1” />

 </dataRef>

 </propertySet>

 <propertySet id="ps3">

 <valueSetRelations>

 <ref valueSetId=”vs2” />

 </valueSetRelations>

 <dataRef>

 <ref begin=”20” end=”27” id=”nd1” />

 </dataRef>

 </propertySet>

 </object>

</xcdl>

Both XCDL-examples describe the same content of a file. There are many more ways to express
the same sentence. For example, it is possible to create an own valueSet for each word and
each property.

<?xml version='1.0' encoding='utf-8'?>

<xcdl xmlns:xsi="http://www.planets-project.eu/xcl/schemas/xcl"
xsi:schemaLocation="http://www.planets-
project.eu/xcl/schemas/xcl/XCDLCore.xsd" id="0">

 <object id="o1">

 <normData id="nd1" type="text">This is a new short
sentence.</normData>

 <property id="p1">

 <name id="id161">bold</name>

 <valueSet id="vs1">

 <labValue>

 <val>default</val>

 <type>XCLLabel</type>

 </labValue>

 <dataRef ind=”normSpecific” propertySetId=”ps1” />

 </valueSet>

 <valueSet id="vs3">

 <labValue>

 <val>default</val>

 <type>XCLLabel</type>

 </labValue>

 <dataRef ind=”normSpecific” propertySetId=”ps2” />

 </valueSet>

 </property>

Page 23 of 46

Project: IST-2006-033789 Planets Deliverable: PC/2-D7

 <property id="p2">

 <name id="id162">italic</name>

 <valueSet id="vs2">

 <labValue>

 <val>default</val>

 <type>XCLLabel</type>

 </labValue>

 <dataRef ind=”normSpecific” propertySetId=”ps2” />

 <dataRef ind=”normSpecific” propertySetId=”ps3” />

 </valueSet>

 </property>

 <propertySet id="ps1">

 <valueSetRelations>

 <ref valueSetId=”vs1” />

 </valueSetRelations>

 <dataRef>

 <ref begin=”10” end=”12” id=”nd1” />

 </dataRef>

 </propertySet>

 <propertySet id="ps2">

 <valueSetRelations>

 <ref valueSetId=”vs3” />

 <ref valueSetId=”vs2” />

 </valueSetRelations>

 <dataRef>

 <ref begin=”14” end=”18” id=”nd1” />

 </dataRef>

 </propertySet>

 <propertySet id="ps3">

 <valueSetRelations>

 <ref valueSetId=”vs2” />

 </valueSetRelations>

 <dataRef>

 <ref begin=”20” end=”27” id=”nd1” />

 </dataRef>

 </propertySet>

 </object>

</xcdl>

Page 24 of 46

Project: IST-2006-033789 Planets Deliverable: PC/2-D7

You may have seen that there are two valueSets of the property 'bold'. This is not the best way
to represent this, but absolutely valid according to the XCDL specification. And it is also possible to
construct an own propertySet for each valueSet.

<?xml version='1.0' encoding='utf-8'?>

<xcdl xmlns:xsi="http://www.planets-project.eu/xcl/schemas/xcl"
xsi:schemaLocation="http://www.planets-
project.eu/xcl/schemas/xcl/XCDLCore.xsd" id="0">

 <object id="o1">

 <normData id="nd1" type="text">This is a new short
sentence.</normData>

 <property id="p1">

 <name id="id161">bold</name>

 <valueSet id="vs1">

 <labValue>

 <val>default</val>

 <type>XCLLabel</type>

 </labValue>

 <dataRef ind=”normSpecific” propertySetId=”ps1” />

 </valueSet>

 <valueSet id="vs3">

 <labValue>

 <val>default</val>

 <type>XCLLabel</type>

 </labValue>

 <dataRef ind=”normSpecific” propertySetId=”ps2” />

 </valueSet>

 </property>

 <property id="p2">

 <name id="id162">italic</name>

 <valueSet id="vs2">

 <labValue>

 <val>default</val>

 <type>XCLLabel</type>

 </labValue>

 <dataRef ind=”normSpecific” propertySetId=”ps2” />

 <dataRef ind=”normSpecific” propertySetId=”ps4” />

 </valueSet>

 </property>

 <propertySet id="ps1">

 <valueSetRelations>

 <ref valueSetId=”vs1” />

 </valueSetRelations>

Page 25 of 46

Project: IST-2006-033789 Planets Deliverable: PC/2-D7

 <dataRef>

 <ref begin=”10” end=”12” id=”nd1” />

 </dataRef>

 </propertySet>

 <propertySet id="ps2">

 <valueSetRelations>

 <ref valueSetId=”vs3” />

 </valueSetRelations>

 <dataRef>

 <ref begin=”14” end=”18” id=”nd1” />

 </dataRef>

 </propertySet>

 <propertySet id="ps4">

 <valueSetRelations>

 <ref valueSetId=”vs2” />

 </valueSetRelations>

 <dataRef>

 <ref begin=”14” end=”18” id=”nd1” />

 </dataRef>

 </propertySet>

 <propertySet id="ps3">

 <valueSetRelations>

 <ref valueSetId=”vs2” />

 </valueSetRelations>

 <dataRef>

 <ref begin=”20” end=”27” id=”nd1” />

 </dataRef>

 </propertySet>

 </object>

</xcdl>

In the example above one propertySet, that contained a few valueSets, has been split into two
propertySets. There is no clear logic, which of this usages and connections of propertySets and
valueSets has to be used. All examples describe the same sentence and its properties but a
"comparator" or rather its software engineer will find it difficult to process all of them.

It is very important, therefore, that we also define rules on how to select between syntactically legal
constructions of the XCDL those, which should be used under normal circumstances for optimal
processing. We propose that one property and its name can only exist once in an object. Same for
valueSets: As a special case of a property it should only be defined once. If one valueSet is
needed more than once, it should be bound several times but not be generated more than once.

If you read normData sequential, you tie a pool of properties via propertySets to the normData. If
the constellation of the properties related to the normDatas changes now, a new propertySet
should be used. PropertySets should not overlap, even though the XCDL specification allows it for

Page 26 of 46

Project: IST-2006-033789 Planets Deliverable: PC/2-D7

reasons of future applications. But a propertySet can and also should be used repeatedly, when
this particular constellation of properties is used again.

With the aid of these simple rules propertySets constructed from different formats will be quite
similar. Even when other tools than the "extractor" are used to generate XCDLs, this rules are able
to improve the structural similarity of the generated XCDL documents – and ease their usage by
other software as a consequence.

propertySet (XML-Node)

The XML-node propertySet is a container for further XML-nodes required to combine
properties into one logical unit. This unit can be linked more easily to normData than it would be to
link each property separately. Furthermore, it is also easier to compare parts of normData for
similarity property-relations. When we observe the rules explained in the last section, linking
normData to the same propertySet implies the relation to the same set of properties for all of them.
This is a child of the node:

object

Attributes:

id - Not only do XML-nodes inside propertySets link to XML-nodes outside, but also XML-nodes
outside of them link back into the propertySets. Therefore propertySets have to have an id, which
is unique within the whole object.

valueSetRelations (XML-Node)

As described previously, propertySets are bound to valueSets of the same object. Because one
propertySet can be connected to more than one valueSet, the XML-node valueSetRelations
is a container for storing all references to valueSets, as will be explained later.

This is a child of node:

propertySet

Attributes:

none

ref - inside valueSetRelations (XML-Node)

The XML-node ref inside the XML-container valueSetRelations describes a link to a valueSet
inside the same object. Conceptually it also points to the propertySet within which it is contained. It
has no explicit pointer to a propertySet, however. One XML-node ref represents exactly one
relation from one propertySet to one valueSet.

This is a child of the node:

valueSetRelations

Page 27 of 46

Project: IST-2006-033789 Planets Deliverable: PC/2-D7

Attributes:

valueSetId - This attribute is the pointer to a valueSet in the same object. It stores the id of a
valueSet. The attribute valueSetId is required.

dataRef (XML-Node)

As has been shown before, propertySets link to parts of the normData and represent a collection of
properties. If these collections are used more than once, a propertySet should not be created
anew, but used again. For this reason there is potentially more than one relation to normData-
nodes. All references from a propertySet to normData are collected into the XML-container
dataRef.

This is a child of the node:

propertySet

Attributes:

none

ref - inside dataRef (XML-Node)

In this context the XML-node ref always points to a part of normData or to the normData-structure
as a whole. In the first case, two offsets are specified in the ref-node, using the two attributes
begin and end. These offsets are defined by counting characters within the XML-node normData,
starting with 0. Of course, you have to specify the identifier of the normData-node to which this
relationship shall be constructed as well.

This is a child of the node:

dataRef

Attributes:

id - This is the identifier of the normData-node to which, the propertySet containing this ref-node,
is related to. This id is required.

begin - This is an offset from the first character of the normData, counting from 0, to the first
character using the related propertySet. This attribute is required, even if it is 0.

end - This is an offset from the first character of the nromData, counting from 0, to the last
character using the related propertySet. This attribute is required, even if it is the last character of
the normData-String.

Page 28 of 46

Project: IST-2006-033789 Planets Deliverable: PC/2-D7

3. Static XCDL Model

There have been several proposals from third parties, to use the XCDL for other purposes than a
direct comparison of two source formats. We feel flattered by these indications of interest and
confidence in the language. Within Planets we have to take care, however, that providing support
to these ideas we do not damage the main purpose of these language within the project. So, while
other usages of the language could and should be discussed, for the purposes of Planets we
propose to proceed as follows.

An XCDL document can be constructed by Planets' "extractor" program, based upon a format-
description expressed in XCEL to extract data from a file and generate an XCDL document. But
this is not the only way to generate XCDLs. Other programs can, and are currently prepared to,
extract data from files and save them as XCDL´documents. It is also possible to specify data
directly in XCDL and use XCDL as a primary format in its own right.

Whereas the first possibility - extract data into a XCDL document to support more formats than the
"extractor" can currently support - is certainly a useful approach, the use of XCDL as a primary
format in its own right is currently not recommended by us for three reasons:

First, XCDL is currently supposed to act as a medium, with which to control the results of a
migration, being independent of the sources as well as the target format of the migration. If an
XCDL document is used directly to save data, the benefit of this “neutral” expression of the file
content is lost. If an archive of images has been converted into XCDL documents, it is not possible
to evaluate the success of the migration because there is no comparison format, with which we
could check the result of this conversion.

The second reason against the use of XCDL itself as an archival format, are aspects of the design
of XCDL itself. XCDL possesses no techniques for, for example, version controlling or unique file
identification. Therefore XCDL would clearly be unsuitable as a primary archival format. Only if the
XCDL documents themselves become connected to additional information, say using the METS
standard, that situation might be mitigated.

And last but not least, the XCDL has not been designed for efficiency. During the XCDL creation
progress all data are decompressed and saved uncompressed, organized in – in principle - human-
readable units. This helps to compare the data but does not help to process them for most
purposes. The enormous amount of data, which are generated by the application of the XCDL to
images for example, makes XCDL clearly not a candidate for long term archiving within current
repository capacities.

Therefore we believe that in its current form the XCDL should be used for comparison purposes
only and not be updated, after the extraction process. Nevertheless it is possible to save additions
to the information extracted originally. The object-model of the XCDL is able to bind in external
XCDLs. If, for example, you try to save image annotations in XCDL and want to save them within
the XCDL document describing the image, it is possible to generate the annotations as an XCDL-
object and connect this XCDL object with the original data extracted from the image. Generally,
however, we do not advice to modify XCDL documents, once they have been created.

 XCDL documents could be used for archiving purposes and not only to control migration
processes; this would need dedicated and not trivial work, therefore, which examines principles of
file organisation and repository structures suitable for such an approach.

Page 29 of 46

Project: IST-2006-033789 Planets Deliverable: PC/2-D7

4. Final Words for now

During the last weeks and months the development of the XCDL has been guided by two
principles. On the one hand we tried to keep the structure of XCDL as simple as possible, while
supporting a reasonable comparison of two XCDL documents. This is only possible in an
acceptable way if the structure of XCDLs is kept as flat as possible. On the other hand it is
important that this structure is able to contain as much information as possible. It is not easy to
develop a format, that is easy to understand and simultaneously able to save information from text
files, picture formats and multimedia content.

If the XCDL is going to be used more generally and new constructs will ´have to be
accommodated, both the specification of the XCDL and the recommendations for its usage will
have to be augmented. We think though, that the current model is sufficiently general, that these
modifications will be minor.

Page 30 of 46

Project: IST-2006-033789 Planets Deliverable: PC/2-D7

5. Modelling information

5.1 Limitations of the current XCL based approach

The XCDL has been designed to allow the modelling of digital content stored in different ways. As it
is presented now, it has been derived from empirical and pragmatic approaches, where the kind of
data contained in file formats which are most frequently discussed within the preservation
community, provided many of the guiding principles for development. We consider this approach
very useful; during the work on XCDL and its sister language XCEL, it became apparent, however,
from discussions both within Planets as well as beyond the project, that there exist expectations for
the treatment of characteristics of digital content, which go beyond some implicit limits of the
empirical approach we have taken.

In one of the more recent documents of the W3C we read:

“The [XML 1.0] defines the XML language using a BNF grammar. Although a number of data
models have been built on top of XML, as a syntactically defined language, XML is in itself data
model agnostic. As stated earlier, an XML format is a format which is capable of representing the
information in an XML document. Information, however, is in the eye of the beholder; what
constitutes information, as opposed to just data, depends on the data model on which an XML
processor is based.”2

The statement is trivial from a computer science point of view: That “information” consists of data
interpreted by some rules which are external to the data interpreted, is one of the most basic
concepts of computer science. That the W3C considers it necessary to emphasize this very basic
concept in a key paper shows, that it is not so present in some of the recent discussions about
standardizing various ways of representing information, than one would wish. Within preservation
discussions the fact, that this differentiation is not followed always very closely, is responsible for
serious and costly misunderstandings, when we discuss what should be preserved about digital
data. Many aspects of a digital document do not reside in the data stored, but in the rules for
representing the information built into the software – in the case of textual documents as stored
within text processing systems, almost all aspects of page layout are based upon parameters of the
software displaying the text, not upon characteristics stored within a file.

Indeed, as has been discussed in detail in another (internal) deliverable of the Planets project3,
texts stored within text processing systems (like MS Word or Open Office) and page descriptive
languages (like PDF), follow almost mutually exclusive ideals of what they can and what they
cannot preserve, between invocations of the rendering software. PDFs take great care to preserve
the layout of a text; they do not try to capture its structure. Office documents take some
considerable interest in preserving the structure of a document, but they found it traditionally
difficult to guarantee consistent layout, even between invocations of the identical rendering
software on two machines with slightly different local settings. There is some convergence in this
field: The concept of a “tagged” PDF augments a layout driven representation with structural
characteristics and particularly the OOXML format includes a very large amount of layout
information into what is basically a representation of the structure of a text. It is difficult not to
assume, that there will not remain some limits to these attempts. One should not forget, that the
early decades of the development of modern markup languages have been completely guided by a
very strong position in that respect: One of the primary reasons, may be the single one most
important reason, for the development of SGML was an assumption, that the way in which textual
information was presented on a specific device was accidental, while irrelevant for most purposes –
therefore a representation of the semantic structure of content of a document was what would be
needed. Seeing the offspring of this development harnessed now into an attempt at making the
rendering of content permanent, is at least astonishing.

2 XML Binary Characterization Properties, W3C Working Group Note 31 March 2005, accessible as
http://www.w3.org/TR/xbc-properties/.

3 PC2, deliverable 6, “Interaction testing benchmark”. Not yet publicly available at the time of this writing.

Page 31 of 46

http://www.w3.org/TR/xbc-properties/

Project: IST-2006-033789 Planets Deliverable: PC/2-D7

On the other hand, human readers are quite good at mixing these two levels: For a human reader
the fact that something is a table or a footnote is immediately apparent from the way in which they
are presented in layout. So, as has been shown in the deliverable quoted above, two
representations of a text in file formats, which follow completely different principles, may still result
in two renderings, which for the human reader look almost indistinguishable. If this capability of a
human evaluator shall be translated into the kind of automated comparison of potentially many
millions of files across migration events, which the XC languages have been designed to support,
the data structures described by these languages have to be examined, whether they have
sufficiently much expressive power to support additional software layers.

The XCDL has currently been developed to support the following scenario:

Or, to formulate this scenario from figure 1 once more: “To evaluate the result of a migration, we
process the following procedure. (a) After a migration tool to be tested converts a file with the
format ‘a’ into a file with the format ‘b’, a software module known as extractor reads formal
specifications of these two formats, expressed in the language XCEL. Based on these
specifications, it extracts the “characteristics” – or indeed the information contained within – those
files and stores them represented by two documents encoded in the XCDL. A further software tool,
which is called comparator, is able to compare these two documents and give an estimate of their
similarity.”

This approach works with most image formats, as the information contained in an image file – the
image itself and auxiliary information, like the owner of the copyright – are recognisable from the
way in which the data are encoded, which are specified explicitly within the file format. It works, in
other words, if “A” represents a TIF file and “B” a PNG file. A problem arises, though, when we try
to process with the same model files, where some of the information is expressed by the human
interpretation of a layout, say the statement “a centred line is a heading” or “sentences which follow
at the bottom of a page after a raised number, which always starts a newline, and appears, also
raised, in the preceding text, too, are footnotes”. Our model finds its limits, when “A” stands for a
PDF file and “B” stands for a DOCX file.

As these interpretations do not reside in the file format specification, but in the mind of the reader,
they cannot be extracted from the file based on the specification of the file format. This does not
say, that it is impossible to derive, what in a text file is a heading or a footnote: The tools to extract
these specifications from a file are based on a semantic analysis of the file’s layout, however. If we
enter such a tool – an analyser – into the figure 1, we get figure 2, the scenario for an extended
usage of the XC languages. Here we assume explicitly, that “A” stands for a file format, which
encodes some of the information implicitly by layout – as in the PDF case – while “B” encodes the
parts of the text explicitly – as in the DOCX case. The extended scenario assumes for this
situation, that the representation of the text in the XCDL produced by the extractor software –
labelled “XCDL A” in figure 2, can be used as input for a software system, which modifies the

Page 32 of 46

Project: IST-2006-033789 Planets Deliverable: PC/2-D7

representation of the text in such a way, that in the derived representation – “XCDL A ‘ “ – a header
which has been recognised by its layout properties in “XCDL A” is represented in “XCDL A’ “ in
exactly the same way, as this header is represented in “XCDL B”, where it has been derived from a
text processing type of document.

It should be pointed out, that as a model this has a very great advantage: As an analyser in this
scenario is expected to produce output in the same representation it expects as input, it is
obviously possible, to understand this as a recursive process, where repeated invocation of the
analyser – or a set of analysers – “improves” the extracted information step by step, by recognizing
more and more of the information expressed in the original file.

The pre-condition for such an extension, which we intend to pursue in the next stage of Planets, is,
that we can represent with the XCDL all stages of such a process; that the XCDL is able, therefore,
to represent the complete information contained within a file. The XCDL will have to be examined,
however, how far (a) it uses an abstract model of information sufficiently powerful for that purpose,
(b) how such a model can be formulated explicitly and (c) whether any changes to the XCDL
become necessary as a result of such a model.

5.2 Towards an information model for preservation purposes
If we want to use the approach described above, we have to be able to compare files, assemblies
of a number of files or different byte streams contained within a file, for the similarity of their
content. To compare two things, they have to be reduced to a common abstract concept, which
allows to concentrate on those characteristics, which are different between two instances of this
concept: ’Comparing apples to oranges’ is the popular expression of the impossibility to compare
two objects, where the fundamental difference of the classes they represent is so pronounced, that
the differences between the individual instances become impossible to evaluate. In a more formal
way, we permanently operate with the notion that reducing representational irrelevancies to a core
of formal, significant content allows us to compare seemingly different information. Nobody doubts
that “MCMLXXXIV” and “1984” represent the same year, because the model “abstract number” is
so deeply rooted in our mind, that we can reduce the representational rules of the two numeric
systems used to their common internal representation within our minds without even noticing.

What we propose is, that: (1) The XCDL above uses – so far implicitly – an information model, that
is able to describe data contained in files at a level of abstraction, where such comparisons are
meaningful. (2) that model can be made explicit and, (3) if that is done sufficiently consistently, it
allows to fine tune the language to support all imaginable needs for the extension of the original
XCL scenario to the extended one which includes an additional step parsing information encoded
by layout.

Page 33 of 46

Project: IST-2006-033789 Planets Deliverable: PC/2-D7

5.3 First sketch of an information model
In the XCDL specification introduced and discussed in the earlier chapters of this document, we
have described a clear separation between two super classes of information contained within files:
“normData”, which describe the data in the narrower sense contained in a file – the pixels of an
image, the character sequence of a text – and “properties” describing how these data shall be
processed generally (colour depth of an image) or handled in specific contexts (the font to be used
for rendering a text). Properties, in that sense, can be applicable to a whole normData sequence
(colour depth) or to a segment of it (font size applicable to characters n to m within a text).

We propose to generalize that preliminarily as follows:

Assumption 1:

Files contain or constitute information objects, which can be seen as instances of a relatively small
number of base information classes: Texts, images, etc.

Assumption 2:

Each such information class consists of “content carrying tokens”.

Example: In the case of a text file, such content carrying tokens are typically characters encoded in
the ASCII or Unicode. In the case of images, they are pixel values.

Assumption 3:

Each of the base classes configures such content carrying tokens in a specification configuration.
Texts are basically sequences of tokens (usually called characters); images are matrices of tokens
(usually called pixel information).

Assumption 4:

Each possible subsection of such a configuration of content carrying tokens can be described by
arbitrarily many orthogonal properties, which describe how such tokens shall be processed.

Example: Processing here stands for purely mechanical as well as semantic operations. An
abstract property can explain, how many bytes a content carrying token of an image has; it also
can describe that characters n – m of a text are related to an entry in another file, where the
geographical location associated with that substring (which presumably represents a topographical
name) is administered.

Assumption 5:

This model is fully recursive. I.e., the character ‘n’ of a text may be described as one property
among others by another textual object “xxx”, which represents, e.g., a footnote. This footnote in
turn can be represented by a string of content carrying tokens – {‘x’, ‘x’, ‘x’} e.g. – each of which
can be described by additional properties: font size, font name – or even another textual object
“yyy” which connects that footnote to an entry in the index page of the primary textual object being
represented.´

5.4 Relationship between Planets information model and XCDL
ontology

The information model above operates on a conceptual level, although it has considerable practical
implications. Basing the next generation of the XCL related software to its, assumes, that we need
a very general but clear data structure on which we can build software, which successively extracts
information from files, which is expressed in many different ways, up to and including the
information which is expressed by layout in one file format, explicitly by specific properties encoded
in a file format in another one. As such it is not a specific semantic, but a way to express the
semantic content of a file, by dividing it into instances of base classes of information. (“A textfile

Page 34 of 46

Project: IST-2006-033789 Planets Deliverable: PC/2-D7

containing an image.”) It can be said to provide a basic, abstract syntax for the representation of
information, independent of its transitory encoding.

The XCDL ontology, on the other hand, provides a description of the relationships between the
terms by which different parts of a file format are represented. It describes relationships between
different terms used within different file formats to represent the same meaning. It can be said to
provide an abstract semantic for the representation of information, independent of its transitory
encoding.

Page 35 of 46

Project: IST-2006-033789 Planets Deliverable: PC/2-D7

6. Appendix

XML-Schema XCDLCore.xsd

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns="http://www.planets-project.eu/xcl/schemas/xcl"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:nm="http://www.planets-project.eu/xcl/schemas/xcl"
 xmlns:xcdl="http://www.planets-project.eu/xcl/schemas/xcl"
 xmlns:xml="http://www.w3.org/XML/1998/namespace"
 targetNamespace="http://www.planets-project.eu/xcl/schemas/xcl"
 elementFormDefault="qualified"
 version="1.0"
 xml:lang="en" >

 <xs:import namespace="http://www.w3.org/XML/1998/namespace"
 schemaLocation="preserve.xsd"/>
 <xs:include schemaLocation="XCDLBasicTypes.xsd"/>
 <!--********************************** xcdl section (root
element)*** -->
 <xs:element name="xcdl">
 <xs:annotation>
 <xs:documentation>
 eXtensible Characterisation Description Language
(XCDL)
 </xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:complexContent>
 <xs:extension base="xcdlType"/>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>
 <!--complex type: xcdlType -->
 <xs:complexType name="xcdlType">
 <xs:annotation>
 <xs:documentation>
 A XCDL document describes digital objects. Every
xcdl description shall have an identification number.
 </xs:documentation>
 </xs:annotation>
 <xs:sequence>
 <xs:element ref="object" maxOccurs="unbounded">
 <xs:annotation>
 <xs:documentation>
 An object is a string of content
carrying tokens (called normData) each token
 can be associated with different
meanings (called properties). Properties can
 either add an atomic meaning to the
referenced token or they can reference
 an other object with the token.
 </xs:documentation>
 </xs:annotation>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="id" type="xcdl:idType02Type"
use="required"/>

Page 36 of 46

Project: IST-2006-033789 Planets Deliverable: PC/2-D7

 </xs:complexType>
 <!-- ***************************** object section (child of:
'xcdl') *** -->
 <xs:element name="object">
 <xs:annotation>
 <xs:documentation>
 Function: Wrapper element for objects to be
described through a xcdl.
 Every object shall have an identification number.
 The native format of the object may be added.
 </xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="data" minOccurs="0"/>
 <xs:element ref="normData" minOccurs="0"
maxOccurs="unbounded"/>
 <xs:element ref="property" minOccurs="0"
maxOccurs="unbounded"/>
 <xs:element ref="propertySet" minOccurs="0"
maxOccurs="unbounded">
 <xs:annotation>
 <xs:documentation>
 A propertySet provides one
possibility to connect atomic properties to a
 more complex set of properties.
References to a specific content token are always
 expressed with the aim of a
propertySet.
 PropertySets have no option to
model the direction of a property relation. If you
 want to provide such a
direction you can use a new object instead where all properties
 are connected to the normData.
 </xs:documentation>
 </xs:annotation>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="id" type="xcdl:idType01Type"
use="required"/>
 </xs:complexType>
 </xs:element>
 <!-- ***************************** propertySet section (child of:
'xcdl') *** -->
 <xs:element name="propertySet">
 <xs:complexType>
 <xs:annotation>
 <xs:documentation>
 A propertySet can reference different
valueSets of different properties to apply them
 to a certain token of the normData.
 </xs:documentation>
 </xs:annotation>
 <xs:sequence>
 <xs:element name="valueSetRelations">
 <xs:annotation>
 <xs:documentation>
 A ValueSetRelation can contain
multiple elements for referencing different valueSets
 </xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>

Page 37 of 46

Project: IST-2006-033789 Planets Deliverable: PC/2-D7

 <xs:element name="ref"
maxOccurs="unbounded">
 <xs:complexType>
 <xs:attribute
name="valueSetId" type="xs:ID" use="required"/>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="dataRef" minOccurs="0">
 <xs:complexType>
 <xs:annotation>
 <xs:documentation>
 A DataRef can be used to
apply the references from within the valueSetRelation element
 to a certain position
(token) of the normData String. For that it must store the begin and end
 of the token in form of
an index and the normData-ID to identify the correct normData.
 </xs:documentation>
 </xs:annotation>
 <xs:sequence>
 <xs:element name="ref"
maxOccurs="unbounded">
 <xs:complexType>
 <xs:attribute
name="begin" type="xs:int" use="required"/>
 <xs:attribute
name="end" type="xs:int" use="required"/>
 <xs:attribute
name="id" type="xs:ID" use="required"/>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="id" type="xs:ID"></xs:attribute>
 </xs:complexType>
 </xs:element>
 <!-- *************************** data section (child of: 'object')
** -->
 <xs:element name="data">
 <xs:annotation>
 <xs:documentation>
 Function: Wraps the full source objects data.
 For relation and reference purposes, an
identification number is required.
 </xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xcdl:unionType01Type">
 <xs:attribute name="id"
type="xcdl:idType01Type" use="required"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 </xs:element>
 <!-- *************************** normalized data section (child of:
'object') ***************************** -->
 <xs:element name="normData">

Page 38 of 46

Project: IST-2006-033789 Planets Deliverable: PC/2-D7

 <xs:annotation>
 <xs:documentation>
 Function: Wraps normalized data.
 </xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xcdl:unionType01Type">
 <xs:attribute name="id"
type="xcdl:idType01Type" use="required"/>
 <xs:attribute name="type"
type="xcdl:informType" use="required"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 </xs:element>
 <!-- ************************ Property section (child of:
'object') ******************************* -->
 <xs:element name="property">
 <xs:annotation>
 <xs:documentation>
 Function: Wraps the objects properties.
 A property shall have an identification number
within the xcdl description.
 </xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="name"/>
 <xs:element ref="valueSet"
maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="id" type="xcdl:idType01Type"
use="required"/>
 <xs:attribute name="source" type="sourceType"
use="optional"/>
 <xs:attribute name="cat" type="catType"
use="optional"/>
 </xs:complexType>
 </xs:element>
 <!-- simple type: sourceType.............: -->
 <xs:simpleType name="sourceType">
 <xs:annotation>
 <xs:documentation>
 the source the property is derived from.
 'raw' =derived from the source object;
'implicit'=property is not fixed to the source object but derived from
the source objects format specification
 'added'= property is not raw and implicit, but
derived from the file, e.g. filesize or original filename
 </xs:documentation>
 </xs:annotation>
 <xs:restriction base="xs:token">
 <xs:enumeration value="raw"/>
 <xs:enumeration value="implicit"/>
 <xs:enumeration value="added"/>
 </xs:restriction>
 </xs:simpleType>
 <!-- simple type: catType.............: -->
 <xs:simpleType name="catType">
 <xs:annotation>
 <xs:documentation>

Page 39 of 46

Project: IST-2006-033789 Planets Deliverable: PC/2-D7

 the properties category: 'descr'=descriptive
property, i.e. occurence of object describing property; 'hist'= history
property,
 i.e. property that may appear in a different
shape in the source object which may be resolved in the xcdl description
(e.g., compressed data);
 'cont'= content property, i.e. relating directly
to a byte sequence; 'extern'= property that refers to external item, i.e.
not related to objects data, e.g.,
 software and hardware used to create the object.
 </xs:documentation>
 </xs:annotation>
 <xs:restriction base="xs:token">
 <xs:enumeration value="descr"/>
 <xs:enumeration value="hist"/>
 <xs:enumeration value="cont"/>
 <xs:enumeration value="extern"/>
 </xs:restriction>
 </xs:simpleType>
 <!-- ************************* property name section (child of:
'property') ************************************** -->
 <xs:element name="name">
 <xs:annotation>
 <xs:documentation>
 Function: Wraps a unique property name, defined
by a xcdl names library.
 Namings for properties which refer to identical
issues may differ depending on the format.
 The different term may be added using the 'alias'
attribute.
 </xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xcdl:nameType">
 <xs:attribute name="id" type="xs:string"
use="required"/>
 <xs:attribute name="alias" type="xs:string"
use="optional"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 </xs:element>
 <!-- ************************ property value set section (child
of: 'property') ********************************* -->
 <xs:element name="valueSet">
 <xs:annotation>
 <xs:documentation>
 Function: Wrapper element for the properties raw
and labelled values.
 Every value set shall have an identification
number.
 </xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="rawValue" minOccurs="0"/>
 <xs:element ref="labValue" minOccurs="0"/>
 <xs:element name="objectRef" minOccurs="0">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:pattern
value="(file://.*|\.):.*"></xs:pattern>

Page 40 of 46

Project: IST-2006-033789 Planets Deliverable: PC/2-D7

 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element ref="dataRef" minOccurs="0"/>
 </xs:sequence>
 <xs:attribute name="id" type="xcdl:idType01Type"
use="required"/>
 </xs:complexType>
 </xs:element>
 <!-- ************************** raw value section (child of:
'valueSet') ************************************** -->
 <xs:element name="rawValue">
 <xs:annotation>
 <xs:documentation>
 Function: Wraps the distinct raw value, as
extracted from the source object ;
 by default bytes shall be encoded in UTF-16 for
non-binary data, in hex numbers for binary data.
 </xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xcdl:unionType01Type"/>
 </xs:simpleContent>
 </xs:complexType>
 </xs:element>
 <!-- ************************ labelled value section (child of:
'valueSet') ******************************* -->
 <xs:element name="labValue">
 <xs:annotation>
 <xs:documentation>
 Function: Wrapping element for labelled value.
 A labelled value shall be expressed by its
distinct value and its type.
 </xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element name="val" maxOccurs="unbounded">
 <xs:annotation>
 <xs:documentation>
 The distinct labelled value.
 This can either be a UTF-16
encoded string, an integer or decimal number or a fixed label defined in
simple type 'xcdlFixedLabls'.
 For an accurate representation
some properties values, especially those expressed in integers,
 may require additional
measurement information.
 </xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension
base="xcdl:unionType10Type">
 <xs:attribute name="unit"
type="xcdl:measureType" use="optional"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 </xs:element>
 <xs:element name="type" maxOccurs="unbounded">
 <xs:annotation>

Page 41 of 46

Project: IST-2006-033789 Planets Deliverable: PC/2-D7

 <xs:documentation>
 Function: Wraps type of the
labelled value.
 Some properties distinct values
may be expressed as a sequence of values which are repeatable groups.
 E.g.: a palette with entries
for colours mixed from red, green and blue channels may be x times
repeatable
 depending on the bit depth. In
this case the 'group' attribute is set on value '3', telling the reading
tool that
 a meaningful unit consists of
triplets.
 </xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension
base="xcdl:labValType">
 <xs:attribute
name="group" type="xs:unsignedInt" use="optional"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <!-- ****************** data reference section (child of:
'valueSet') ************************** -->
 <xs:element name="dataRef">
 <xs:annotation>
 <xs:documentation>
 Function: Reference to data.
 This can either be the source data (element
'data')
 or normalized data (element 'normData').
 Attribute 'ind': Indicator for the type of
reference.
 </xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:attribute name="ind" type="dataRefType"
use="required"/>
 <xs:attribute name="propertySetId" type="xs:ID"
use="optional"/>
 </xs:complexType>
 </xs:element>
 <!--simple type: 'dataRefType': -->
 <xs:simpleType name="dataRefType">
 <xs:annotation>
 <xs:documentation>
 Type of data reference: none= no reference to
data; normSpecific= reference to specific normalized data;
 global= reference to all normalized data in the
same object. If value is 'normSpecific', 'ref' element shall be included.
 </xs:documentation>
 </xs:annotation>
 <xs:restriction base="xs:token">
 <xs:enumeration value="none"/>
 <xs:enumeration value="global"/>
 <xs:enumeration value="normSpecific"/>
 </xs:restriction>

Page 42 of 46

Project: IST-2006-033789 Planets Deliverable: PC/2-D7

 </xs:simpleType>
 <!-- element 'ref': -->
 <xs:element name="ref">
 <xs:annotation>
 <xs:documentation>
 Function: distinct data coordinates for
references.
 Startposition and Endposition of the bytes within
the
 referenced data shall be declared using the
attributes.
 Also required is an identification number for
each 'ref' element.
 </xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:attribute name="id" type="xcdl:idType01Type"
use="required"/>
 <xs:attribute name="start" type="xs:unsignedLong"
use="required"/>
 <xs:attribute name="end" type="xs:unsignedLong"
use="required"/>
 </xs:complexType>
 </xs:element>
</xs:schema>

XML-Schema XCDLBasicTypes.xsd

<?xml version="1.0" encoding="UTF-8"?>
 <xs:schema
 xmlns="http://www.planets-project.eu/xcl/schemas/xcl"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:nm="http://www.planets-project.eu/xcl/schemas/xcl"
 xmlns:xcdl="http://www.planets-project.eu/xcl/schemas/xcl"
 targetNamespace="http://www.planets-project.eu/xcl/schemas/xcl"
 elementFormDefault="qualified"
 version="1.0"
 xml:lang="en">
 <xs:include schemaLocation="xcel/XCLBasicNamesLib.xsd" />
 <!-- *** union types *** -->
 <xs:simpleType name="unionType01Type">
 <xs:union memberTypes="xs:string xs:hexBinary"/>
 </xs:simpleType>
 <xs:simpleType name="unionType02Type">
 <xs:union memberTypes="xs:string xs:integer"/>
 </xs:simpleType>
 <xs:simpleType name="unionType10Type">
 <xs:union memberTypes="xs:string xs:decimal
xcdl:fixLabelsType"/>
 </xs:simpleType>
<!-- *** identification number types *** -->
 <xs:simpleType name="idType01Type">
 <xs:restriction base="xs:string"/>
 </xs:simpleType>
 <xs:simpleType name="idType02Type">
 <xs:restriction base="xs:string"/>
 </xs:simpleType>
 <!-- *** information types *** -->
 <xs:simpleType name="informType">

Page 43 of 46

Project: IST-2006-033789 Planets Deliverable: PC/2-D7

 <xs:annotation>
 <xs:documentation>
 type of information represented by data.
 </xs:documentation>
 </xs:annotation>
 <xs:restriction base="xs:string">
 <xs:enumeration value="text"/>
 <xs:enumeration value="image"/>
 <xs:enumeration value="audio"/>
 <xs:enumeration value="object"/>
 <xs:enumeration value="other"/>
 </xs:restriction>
 </xs:simpleType>
 <!-- *** format identifier type *** -->
 <xs:simpleType name="formatIdentifierType">
 <xs:restriction base="xs:string"/>
 </xs:simpleType>
 <!-- *** measure types *** -->
 <xs:simpleType name="measureType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="bit"/>
 <xs:enumeration value="twip"/>
 <xs:enumeration value="pixel"/>
 <xs:enumeration value="inch"/>
 <xs:enumeration value="meter"/>
 <xs:enumeration value="palette"/>
 <xs:enumeration value="point"/>
 </xs:restriction>
 </xs:simpleType>
 <!-- *** simple type for xcl defined namings for properties: *** --
>
 <xs:simpleType name="nameType">
 <xs:annotation>
 <xs:documentation> union of xcl defined namings for
xcdl properties</xs:documentation>
 </xs:annotation>
 <xs:union memberTypes="nm:xclBasicNameDefinitions
xs:string"/>
 </xs:simpleType>
 <!-- *** simple type for xcl defined data types for xcdl labelled
value types: *** -->
 <xs:simpleType name="labValType">
 <xs:annotation>
 <xs:documentation>derived from xcl defined data
types</xs:documentation>
 </xs:annotation>
 <xs:union memberTypes="nm:xclBasicNameDefinitions
xs:string"/>
 </xs:simpleType>
 <!-- *** simple type for xcl defined namings for xcdl properties'
labelled values: *** -->
 <xs:simpleType name="fixLabelsType">
 <xs:annotation>
 <xs:documentation> union of xcl defined namings for
xcdl fixed labellings</xs:documentation>
 </xs:annotation>
 <xs:union memberTypes="nm:xclBasicNameDefinitions xs:string"
/>
 </xs:simpleType>
 <xs:simpleType name="spaceTypes">
 <xs:restriction base="xs:token">
 <xs:enumeration value="preserved"/>
 <xs:enumeration value="default"/>

Page 44 of 46

Project: IST-2006-033789 Planets Deliverable: PC/2-D7

 </xs:restriction>
 </xs:simpleType>
</xs:schema>

Page 45 of 46

Project: IST-2006-033789 Planets Deliverable: PC/2-D7

7. Reference

1. Jan Schnasse, Volker Heydegger et. al., XCEL Specification, 2008;

http://planetarium.hki.uni-koeln.de/public/XCL/xcl/XCLDocumentation/xcelDocu.htm

2. Metadata Encoding & Transmission Standard

http://www.loc.gov/standards/mets/

3. Ecma International approves Office Open XML standard

http://www.ecma-international.org/news/PressReleases/PR_TC45_Dec2006.htm

4. Volker Heydegger, Jan Schnasse et. Al, XCDL Specification (2006)

Page 46 of 46

http://forge.gridforum.org/sf/projects/dfdl-wg
http://www.ecma-international.org/news/TC45_current_work/TC45_available_docs.htm

	Introduction
	Relationship of this version of the XCDL to the original spe
	Main Purpose of the XCDL

	The XCDL-Specification and Examples
	A First XCDL Document
	xcdl (XML-Node)
	Objects
	Object (XML-Node)
	objectRef (XML-Node)
	normData
	normData (XML-Node)
	Properties
	Property (XML-Node)
	Name (XML-Node)
	valueSet (XML-Node)
	labValue(XML-Node)
	val (XML-Node)
	Type (XML-Node)
	rawValue (XML-Node)
	dataRef (XML-Node)
	PropertySets
	propertySet (XML-Node)
	valueSetRelations (XML-Node)
	ref - inside valueSetRelations (XML-Node)
	dataRef (XML-Node)
	ref - inside dataRef (XML-Node)

	Static XCDL Model
	Final Words for now
	Modelling information
	Limitations of the current XCL based approach
	Towards an information model for preservation purposes
	First sketch of an information model
	Relationship between Planets information model and XCDL onto

	Appendix
	XML-Schema XCDLCore.xsd
	XML-Schema XCDLBasicTypes.xsd

	Reference

