

Project Number IST-2006-033789

Project Title Planets

Title of Deliverable Specification of a Planets-wide Ontology of properties for digital
preservation needs. (Part three of a three-part final report from the
Digital Object Properties Working Group Report)

Deliverable Number D23C

Contributing Sub-project
and Work-package

PC/3

Deliverable
Dissemination Level

External

Deliverable Nature Report

Contractual Delivery
Date

26th April 2010

Actual Delivery Date 26th May 2010

Author(s) UzK

Contributors

Person Role Partner Contribution
Robert Kummer UZK Author

Johanna Puhl UZK Author

Keyword list: Ontology, XCL, property, observational, extractable, preservation,
rendering, performance, OWL

Contents
1. Purpose of this document .. 4
2. Previous work.. 4
3. Ontology Sources ... 4
4. Ontology Purpose ... 5
5. Standards to be used.. 7

5.1. Ontology integration .. 7
5.2. Anonymous classes .. 8
5.3. Non-transitive cardinality-restrictions:.. 8

6. The Structure ... 9
6.1. The basic concepts: Preservation concepts and file properties as classes
and individuals ... 9
6.2. Describing file properties with units and datatypes ... 9
6.3. The concept of OWL:ObjectProperty... 10

7. The Terminology ... 10
7.1. Common understanding of “Property” and “Characteristic”............................... 10
7.2. Observational and Extractable in the Planets Ontology 10
7.3. Definition of Extractable Properties ... 11
7.4. Definition of Observational Properties ... 12
7.5. Approach to Terminological Problems .. 12

7.5.1. Observational vs. Extractable.. 12
7.5.2. Rendering properties ... 12
7.5.3. Performance Properties... 13

8. Technical documentation ... 13
8.1. The Planets-Ontology as a whole.. 13
8.2. PLATO issues ... 15

9. Outlook... 15

1. Purpose of this document
The aim of this document is to set the context of the ontology work that has been
undertaken during the course of PLANETS and which has lead to the development of
the PLANETS-wide ontology.

This report is part of a three-part final report from the PLANETS Digital Object
Properties Working Group. The three companion reports, which can be read in
conjunction, are:

• The concept of significant properties. (PLANETS deliverable PC3 – D23A);
• Planets components for the extraction and evaluation of digital object

properties (PLANETS deliverable PC3 – D23B); and
• Specification of a Planets-wide Ontology of properties for digital preservation

needs. (PLANETS deliverable PC3 – D23C) (this report).

2. Previous work
Within the PLANETS-project a lot of investigations regarding preservation-relevant
(file-) properties have been pursued in different sub-projects. To unify these different
achievements a model was needed that represents the outcome of this researches
and relates them to each other. It has shown that for this purpose an ontology can be
an effective tool to not only unify the results of research but also link them to each
other to be able to generate new knowledge about a certain domain of interest.1

Research on ontologies within PLANETS started with developing the XCL ontology. It
has been designed at the University of Cologne to establish a canonical naming
scheme and conventions for classification of file-format properties within extractor
and comparator tools. These pieces of software and two XML-based languages have
been created in the PLANETS sub-project “Preservation Characterisation” in
Cologne.
The extractor is supposed to read all available information within a file (of one of the
supported formats) and to create a description file that contains this information. The
description file is written in the XCDL-language that is easily readable for humans
and machines.
In a scenario where a file has been migrated to a different file-format and a
preservation-manager needs to find out if all information has been correctly
transformed into the new file (of the new format) he can find out by having the
information of both files extracted and encoded in the XCDL-format. Then, another
tool that has been built in Cologne, the Comparator, can scan both files for properties
that differ after being migrated from one file format to the other.
The XCL-Ontology takes care that all property are denominated in a way that they
conform to a certain naming convention as well as are relying on the same units and
data types. Both the extractor and comparator query the ontology by accessing a
web service endpoint and by then retrieving the according information to map file-
specific names to the canonical ones.

3. Ontology Sources

1 “Ontology” is a term frequently used in Semantic Web research. For more information about
the concepts used in this document refer to the W3C Semantic Web page
(http://www.w3.org/). It provides extensive information and introductory material.

http://www.w3.org/

Complementary to the XCL-Ontology, another ontology has been established, the
PLANETS-wide ontology. While the former is focused on dealing with file properties,
the latter also aims at including additional properties that are significant in the
preservation context. It should represent the knowledge about properties dealing with
digital preservation in general that turned out to be important in different PLANETS
sub-projects. Consequently, it relies on the XCL-Ontology as a foundation but
extends the structure beyond its means to encode file properties.
To facilitate distributed development while maintaining a clean structure, the
PLANETS-wide ontology has been split into several dependent ontologies that are
maintained in different files. The relations between properties that stem from different
projects and therefore appear in different files need to be investigated, defined and
modelled.
The following information has already been included within the Planets-wide
Ontology:

• PP/2: Report on policy and strategy models for libraries, archives and data
centres2

• Plato: Preservation plan template for significant properties3
• TB/3: Methods for testing4
• Inspect: Properties from the INSPECT project5
• PC3-D9 part 2: Classification scheme for representation information

networks6
• XCL-Properties: Properties from the PC-Extractor and -Comparator7

The file properties that have been listed in each of the sources used were simply
integrated into subclasses according to either the subprojects name or – in the case
that further classifications were made – the classifications name. For example, the
work of TB/3 lists properties according to kinds of file types similarly to the XCL-
structure. [did exploit information if it was available]
The semantic structure that was used to build the sub-ontologies was therefore the
same as in the XCL-Ontology to be able to create links between these in an
uncomplicated way.
Still, not all semantic issues could be solved according to the slightly different
meaning of properties from different subprojects with almost the same names.

4. Ontology Purpose
Many properties that stem from files and other preservation topics have been
discussed in the scope of the PLANETS project. To provide an overview, a model
needed to be established that is both machine- and human-readable. This is
guaranteed by using OWL as XML-RDF representation for the Ontology.

2 http://www.planets-project.eu/private/pages/wiki/index.php/PP/2_Draft_Conceptual_Model
3 http://gforge.planets-
project.eu/svn/planningtool/trunk/data/templates/public_fragments/Significant%20properties.
mm
4 ftp://www.planets-project.eu:1924/docs/Deliverables/5Testbed_(TB)/Planets_TB3-
D2_MethodsforTesting_final.pdf)
5 http://www.significantproperties.org.uk/resources.html
6 http://www.planets-project.eu/private/planets-ftp/WP_PC/XCLOntologyJP2HMrdf.owl
7 http://planetarium.hki.uni-koeln.de/planets_cms/ontology/XCLOntology.owl

Machine-readable in this context means that OWL can be interpreted through
reasoning software and therefore enables machines to draw conclusions from it.
The XCL-Ontology has already been used within the “Preservation Characterization”
project and the latest version of the test bed environment. There, it proved to be a
useful tool.
Basically, ontologies have been proposed to support communication processes in
larger groups. They have been developed to help organisations finding a common
language and understanding of important concepts. In comparison to flat glossaries
or terminology lists, ontologies can have a complex thesaurus-like structure. Thus,
they not only define certain notions but can also encode complex interrelations.
File properties can be most adequately described together with their surrounding
preservation ecosystem. Thus, the ontology seems to be a good way to describe
them. In certain use cases ontologies can help the manager of a preservation-
workflow to decide on which tools to use and learn which sequences of operations
have to be executed.
A somewhat more elaborate description on how an ontology can be used has been
formulated as a user scenario8. It describes certain situations and user actions where
the utilization of the PLANETS-wide ontology most likely could be helpful.
Institutions that take care of the long-term preservation of digital objects rely on
comprehensive domain knowledge. Here, the ontology will function as a knowledge
base with structured information about file properties and those that are also
important in a preservation ecosystem. For example, in the context of PLANETS, the
ontology will be of use for the Plato planning tool and the Testbed, once it is
implemented.
As it provides the user with information about file-properties and properties that are
important in a preservation ecosystem it can be very helpful in an institution that
takes care about the long-term preservation of digital objects.

8 This scenario can be found in companion report, Planets components for the extraction and
evaluation of digital object properties (PLANETS deliverable PC3 – D23B)

5. Standards to be used
The Planets-wide Ontology will be written in OWL/RDF with the expressivity of OWL-
Lite. In general, there are three different ways to model an ontology using the
following dialects: OWL Full, OWL Lite and OWL DL (= Description Logic). Those
dialects relate to each other as follows: A document written in OWL Lite is also a
valid OWL DL-document, which is also a valid OWL-Full document. This means that
OWL Lite is the most specialised dialect of these three but still appeared to be
suitable to express preservation topics. The described order expresses that OWL Full
has the loosest rules and allows constructs that cannot be handled by common
Semantic Web tools. OWL Full can handle almost any construction as long it is valid
RDF and is therefore most endangered of being used in an inconsistent way.
As OWL Lite is the strictest conception of this order, it does not allow many of the
concepts that the other OWL dialects do allow9.

5.1. Ontology integration

Each of the ontologies has been modelled in a way that supports its alignment with
the PLANETS-wide ontology. OWL and RDFS do provide several ways to align
information that has been modelled in different ontologies. These comprise SWRL10
rules; OWL and RDFS class axioms as well as additional means to express identity
of individuals.
To align classes properly that have been defined in different project ontologies the
RDFS property rdfs:subClassOf has been used. Most Semantic Web software will be
able to handle this property for correct reasoning. RDFS has been preferred to OWL
(owl:equivalentClass) wherever it was possible for reason of compatibility and
simplicity:

@prefix rdfs: <http://[…]/22-rdf-syntax-ns#>.
@prefix xcl: <http://[…]/XCLOntology#>.
@base <http://[…]/PLANETSOntology#>.

:audioInformation a rdfs:Class;
 rdfs:subClassOf xcl:XCL_Properties;
 rdfs:subClassOf :ExtractableProperties.

9 See also: http://www.w3.org/TR/owl-features/
10 SWRL = Semantic Web Rule Language: http://www.daml.org/2003/11/swrl/

The built-in OWL property owl:sameAs can be used to link one OWL individual to
another individual. However, in the scope of XCL it seemed to be reasonable to avoid
this mechanism as properties meanings overlap between different file-formats or use
different units or datatypes. So it did not seem appropriate to use a mechanism that
implies a perfectly equivalent relationship; therefore we considered it to be helpful to
define a special relationship for expressing relationships between properties called
xcl:convertTo. This will also prevent Semantic Web reasoners from automatically
processing identity relations and adding additional facts. Thus, the responsibility for
processing has been delegated to software that can interpret the XCL namespace.
The scope of the property xcl:convertTo has been defined rather general to capture
the semantics of most conversion processes. Sub-properties could be defined to
capture the nature of more specific migrations. For example xcl:castTo could be
introduced for converting an enumeration to a string data type.
Since relationships between PLANETS properties also cannot always be defined
clearly as identity, we decided to use that same relationship. This relationship
expresses that specific properties express the same, but use different units or
datatypes in different contexts.11 Since these can be converted to each other, the
relationship has been called xcl:convertTo.
Note: The terminology regarding properties is a little precarious as OWL itself uses a
concept called property (OWL:property) to express relationships between individuals
while we decided to model file-properties as individuals. So this is why we tried to
avoid the notion “property” for relationships that are in fact modelled as
OWL:property.

5.2. Anonymous classes

Anonymous classes are unnamed classes that may be needed to relate other
classes to each other through concepts like owl:unionOf. OWL Full completely
supports anonymous classes while OWL DL only accepts anonymous classes if they
are not in a domain-range, equivalent- or disjoint- relationship to other classes. OWL
Lite supports anonymous classes in an even more limited way. All classes and
sublasses need to be named before one is able to define relationships between
them. This is completely acceptable for our purpose, as we define properties to have
very clear origins and do not use classes to define their internal relations.

5.3. Non-transitive cardinality-restrictions:

Non-transitive cardinality-restrictions are useful in situations where A relates to B but
not the other way around. Here, it is not possible to express cardinalities of any kind.
Restriction rules are also valid for modelling OWL DL ontologies.
The following rules are only restrictions for OWL Lite but not for OWL DL:

• Constructs like owl:oneOf, owl:disjointWith, owl:unionOf, owl:complementOf
and owl:hasValue are not allowed.

• Cardinality Expressions can only have the values 0 and 1.
• owl:equivalentClass is only usable between named classes.

For further information on the different dialects see12.

11 http://planetarium.hki.uni-koeln.de/planets_cms/sites/default/files/PC2D12D13PC4D7-
01.pdf
12 http://www.w3.org/TR/owl-features/

In opposite to the other OWL dialects OWL-Lite is also calculable in finite time. In the
scope of PLANETS, the advantage of OWL Lite is that it doesn’t allow the conceptual
merging of individuals (entities) and classes. This means that in class hierarchies,
subclasses are always still abstract concepts and can never be real – concrete –
instances of classes – this supports the differentiation between a file-property itself
(bitdepth) and the abstract concept of a property (imageproperty). This conceptual
separation also allows for a specified kind of reasoning and is therefore well qualified
for logical conclusions.
Regarding logical conclusions, the Ontology can be queried by SPARQL services.
This is helpful for advanced usage in the PLANETS-software Testbed and PLATO.

6. The Structure

6.1. The basic concepts: Preservation concepts and file properties as
classes and individuals

This section will describe the structure of the PLANETS-wide ontology. Concepts that
are important in the context of preservation activities have been modelled as so-
called classes (the appropriate OWL concept is owl:Class). By contrast, file
properties have been constructed as so-called individuals (owl:Individual) that belong
to a certain class (for example xcl:XCL_Properties). From this follows, that they are
particular materialisations of an abstract concept.
Still a file property is an abstract concept (e.g. imagewidth is an abstract concept,
that is an instance of the class image-properties) in the PLANETS-Ontology. As a file
property is already constructed as the lowest leaf within the hierarchical order of the
Ontology, it cannot contain a concrete value for a certain files. It just states that a file
of a certain type containes properties that can have values of a certain type.
Individuals (i.e. file properties in the context of PLANETS) can relate to other
individuals like measurement units that do apply to a certain file property. Additional
information on the distinction between owl:Class and owl:Individual can be found in
the W3C section “Design for Use” in the document “OWL Web Ontology Language
Guide”.13

6.2. Describing file properties with units and datatypes

Other constructions are the aforementioned units or data types, because technical
extractable properties like the width of an image (imagewidth) do have a data type
like integer and units like pixels. Other properties do only have a data type and no
unit. A good example is a file name that has string as its data type but no unit like
centimetres (cm) or beats per minute (bpm).
The constructions “datatype” and “unit” are modelled as an annotation property in
OWL (owl:annotationProperty). Their instances (e.g.: bpm, cm, inch, em for unit or
integer, string, bool for datatype) are also constructed as individuals because they
are again particular instances of an abstract concept data types respectively units.
Each Property can be associated with a unit and a datatype, if necessary, and
intended in the original file-format. It can be helpful to define mapping-mechanisms
between units like centimetre and inch through the OWL object property construction
(owl:ObjectProperty).
These are algorithms that have already been defined in the XCL-Ontology like the
conversion from em to point (planets:em_to_point) or centimetres to pixel
(planets:cm_to_pixel).

13 http://www.w3.org/TR/2004/REC-owl-guide-20040210/#DesignForUse

PLANETS PRODUCT SPECIFICATION

6.3. The concept of OWL:ObjectProperty

Object properties will be used to define relations between PLANETS-properties.
Although they carry a similar name, they will not be used to define PLANETS-
properties themselves. The recommended usage in OWL is to map entities as
referred to above.
Object properties will also be used to map properties from different provenances to
each other. This allows for managing redundancies. For example:
The property for the color depth of an image is defined within the PLANETS-
Subproject TB/3 (tb3:Color_depth). It can also be found within a lot of file-format-
standards, like TIFF or JPEG. In this case, the counterpart of this property will be
available in the XCL-Ontology, that already contains a lot of extractable Properties.
These are already mapped by object properties to the XCL-naming-conventions.
In this case the object property is called xcl:convertTo. This facilitates to use the
same object property again to map the TB/3-Property tb3:Color_depth (“Describes
the number of bits used to represent the colour of a single pixel; Can not be
determined by visual inspection (you cannot simply see it) but only by a tool.”) to the
XCL-Property xcl:bitDepth which denotes the number of bits per colour.
Unfortunately, this example illustrates one of the rare cases that do not require
further attention in opposition to a property like an author of a certain source.
There are several properties that need much more attention like the aforementioned
property that denotes an author in PP2 (pp2:author). We still have to define relations
that make it possible to link this property to a property like “Creator” because both
properties can denote the same entity but do not necessarily. Therefore, the defined
relationship has to interact with other relationships. “Author” and “creator” should be
connected by a relation that indicates their sameness in some contexts (for example
xcl:convertTo) but also by one that expresses their inequality in other contexts, which
has not yet been defined.
This example should clarify that properties need to be well defined to prevent the
ontology from becoming inconsistent. Up to now, the particular ontologies have not
undergone in-depth investigation regarding the aforementioned criteria.

7. The Terminology

7.1. Common understanding of “Property” and “Characteristic”

Referring to the paper of Angela Dappert et al.14, we decide to denominate the
entities found in file-formats as “properties”, while concrete instances of these (a
certain tangible value of a property in a certain file) are called “characteristics”. As all
the ontologies subsumed in the PLANETS-ontology are abstract concepts of
properties (i.e. they don’t carry any concrete values for certain files), the term to be
used within these ontologies is always “property”.

7.2. Observational and Extractable in the Planets Ontology

To find a common understanding of properties worth maintaining, we have identified
two categories. By categorizing file- and environmental properties as “extractable”
and “observational”, the user-experience of a file should be preserved.

14 Angela Dappert and Adam Farquhar: Significant Properties, Characteristics, or
Requirements. Page 3

PLANETS PRODUCT SPECIFICATION

During the investigation of properties in the PLANETS project, the category
"extractable" was brought up by software like the XCL-Extractor. Referring to this
strategy of extracting properties a terminology problem emerged, on how to name
properties, which are not extractable by software. We decided to call these
"Observational". In order to find a clear structure on which to map properties to in the
Ontology both terms needed a clearer definition.

7.3. Definition of Extractable Properties

A property falls in the category “extractable, if it is kept within a file and can be
extracted by a common peace of software. In contrast, there exist other properties
that relate to a file but are not stored within the file. Therefore, they are not easily
extractable. The latter fall in the category “observation” which is also referred to as
“observable”. However, both denote the same thing.
A property such as "image-resolution" clearly is extractable – its value can be drawn
from a file's bit stream itself. Additionally, the resolution of an image is clearly not
observable; a human eye can’t measure that an image has the exact resolution of
300 dpi. If any the human observer can only judge whether image 1 has a higher
resolution than image 2 or not. On the other hand, one could argument that a human
observer will consult software like Photoshop to figure out the resolution of an image.
But in this case, it is clear that the software still extracts the resolution – the human
observer still has to rely on the software that informs about the value of the
resolution.
In some cases it is difficult to define and distinguish these categories. One example
for why it is so difficult to define the category "extractable" is the property "operation
system". In general, one would assume that information about the file-system on
which a file was produced could be easily extracted by software. Files can be
produced in a lot of file-formats on different kinds of operating systems. Most file
formats do not store that information and the operating system cannot be considered
to be “extractable” in the sense of the narrow definition. The following two examples
should help to better understand the distinction.
Neither PDF nor TIFF and JPG store information about the operating system context
according to their format-specifications. But there surely exist file-formats – in most
cases metadata formats – that store that information, these are for example: The
NISO-standard for describing images. This standard stores a property called
hostComputer, which is described as "Computer and/or operating system in use at
the time of image creation.” So we can assume, that in the case of a NISO-MIX-file
information about the creating operating system is extractable.
Another example is the property that represents the quality of an image. If we define
the category “extractable” wide enough, we could find a piece of software that is able
to identify the quality of an image and encode it as a value on a certain scale by
measuring the grain size within areas of an image. Still, this property, image-quality,
heavily depends on what criteria it is measured with and by which piece of software it
is extracted. Usually a COMMON15 image-rendering programme is not able to decide
how high the quality of an image is, nor do file-formats for images store this
information within themselves. Therefore, we consider the image quality to be not
“extractable” but rather “observable” by a human. And therefore it belongs to the
category "observational".

15 We define common software to be a programme that can be operated by an average
computer-user (e.g. no command-line-tools)

PLANETS PRODUCT SPECIFICATION

7.4. Definition of Observational Properties

"Observational" properties are properties that relate to files but are not stored within
the files and are therefore often not "extractable". An example for this category of
properties is clearly the above described image quality as well as information about
the regulation of legal access. This property could contain any information about a
license or regulation connected to the access to a file and is important in a
preservation context within an organisation. Still there is no common software that is
able to extract this information neither from a file nor from the software environment.
There are cases where it is not so easy to decide whether a property is
"observational" or "extractable". As shown above, the quality of an image can be an
example for conflicts; another one is page number information in text files.
Obviously, a human observer can comprehend a page number. And it can be
extracted by software in certain cases. For example, file formats from the Microsoft
Office-family, like DOC, DOCX or RTF store information about page numbers in a
certain field for each page. This field usually contains the integer-value that is
interpreted as page-number. But a file-format like PDF does not store structural
information like heads, subheads, chapters or page-numbers as properties.
Within a PDF document a page-number (=the number on the page itself) is not
interpreted as a page-number but as just another text-field with the coordinates in the
bottom of the page. The problem of unsynchronised page-numbers in PDF is known.
However, there is still no software that would be able to solve that problem.
Therefore, page numbers are only "observational” for PDF documents but can also
be "extractable" for other formats like MS Office files.

7.5. Approach to Terminological Problems

7.5.1. Observational vs. Extractable
One approach to the terminological problems that have been described is to define
the categories “observational" and “extractable" as not being mutually exclusive. The
definition should aim at helping the operator of preservation-software to decide
whether he should use software to compare properties or whether he should
compare properties manually. He can rely on software if the property is “extractable”
and needs to allocate human resources if a property is “observational”. To put it in a
nutshell, we constitute that a property is "extractable" if it is kept within a file and is
extractable by a COMMON piece of software.
Within the Planets Ontology the properties in those two categories will
therefore have no disjunctive relation but rather the relation of an intersection.

7.5.2. Rendering properties
The advantage of the Planets-ontology is that it can explicitly define, which software
is able to extract properties from files.
One could model the perceived quality of an image as a property that belongs to the
class for properties relating to graphics and leave it at that. Additionally, since OWL
supports multiple inheritance, this property could also belong to a further class for
properties that can only be extracted after rendering a file. But by making use of
object properties more complex coherences can be modelled that better reflect how
certain properties work. The property that represents the image quality could be
further refined within the ontology to express that it is extractable with a certain
software or algorithm and is related to the current graphic board of the local
computer.

PLANETS PRODUCT SPECIFICATION

By advancing this approach, the ontology could become a knowledge base that helps
software to assess whether it is possible to extract a property and under which
circumstances. The technique described is planned for being implemented into the
XCL-Ontology and will be integrated in the PLANETS-ontology as well. This will allow
file creators to construct detailed statements about properties and their interactions
with software. The class that holds properties that depend on a file to be rendered
will be modelled parallel to “observational” and “extractable” properties. Thus, they
inherit from the same class that holds file properties (planets:FileProperty). Time will
tell if this construction is sufficient for future use cases or if further discussion needs
to take place for better clarification. But ontologies tend to be flexible in adopting
changes, which can easily be made by moving subclasses to different levels within
the class hierarchy.

7.5.3. Performance Properties
In the area of software engineering performance is defined as the ability of a software
environment to conduct certain tasks within a certain amount of time and according
to other criteria like synchronicity, non-intermittent duty.
Apart from the information stored within a file, there is additional information needed
to calculate statements about the "performance" of files/software/operation systems
like the processor-type, the amount of other programs running on the machine at the
same time etc.
Regarding all these criteria, that are needed to extract the performance of a certain
piece of software we can consider that software, that measures performance is a) not
common in use and b) the information about performance properties is not contained
in the objects themselves. "Performance properties" are rather a subclass of
"Observational" properties in the context of the Ontology but will be treated the same
way as “Rendering Properties”. At the monent it is not foreseeable to which extent
these properties will be dicussed within the last months of PLANETS.

8. Technical documentation

8.1. The Planets-Ontology as a whole

The PLANETS-ontology is modelled in OWL-Lite but does contain only a very few
individuals (PLANETS file properties) itself, because these are integrated from
different dependent ontologies.
The ontology itself contains the basic class structure that incorporates different kinds
of properties for different purposes as described in the several Planets sub-projects
and in the terminology chapter in this paper.
A screenshot of the class structure of the Planets-Ontology:

PLANETS PRODUCT SPECIFICATION

The efforts of each sub-project that have been mentioned in chapter 3 have been
modelled as an individual OWL-file. Each file shares the same design principles
where properties have been modelled as members of subclasses. The sub classes in
these project-specific ontologies have been constructed according to their description
in the subprojects. The specific ontologies are aligned with the PLANETS-wide
ontology by mapping project specific classes to their global correspondents. As this is
not possible with all classes, some properties (individuals) have to be manually
asserted to new classes, like the to categories “extractable properties” and
“observable properties”.
Determined by its historical development one of the PLANETS-wide concepts, the
units and data types will be kept in the XCL-Ontology, to maintain its independence
as a single file. But still these concepts can be used within the whole PLANETS-
ontology and the other project-specific ontologies without having to declare them
again. This is done through the mechanism of incorporation of other ontologies: The
ontology that has been generated from information in TB/3, for example, includes the
XCL-Ontology. By exploiting this mechanism, units and data types that have been
defined in XCL can also be used in TB3. This case might explain why the
provenance of properties influences the structure of it.

PLANETS PRODUCT SPECIFICATION

8.2. PLATO issues

The provenance of properties did raise some questions while aligning the PLATO-
ontology to the PLANETS-ontology. PLATO offers certain properties to a user to let
him assign a priority value to it for the later execution of a preservation plan. The
provenance of these properties has never been completely clarified. Some of them
certainly stem from XCL (because Plato uses the XCL-Comperator); others remind of
planning-properties, which have been discussed within PP/2 – again, others seem to
be new. Therefore, we decided to include only the properties exclusively found in
PLATO. These comprise for example properties that have been defined to describe
console video games. Others have been omitted to avoid redundancies.

The Ontology will be stored at http://gforge.planets-project.eu/svn/xcltools/trunk/
PLANETS_Ontology/ until the end of the project16. It will be edited with protegé 4.0
Beta. Some documentation has been put on-line as interlinked html-pages at
“http://planetarium.hki.uni-koeln.de/planets_cms/ontology/owlDoc/index.html”.

9. Outlook
Within the ontologies, all properties will be arranged into the classes “extractable”
and “observable” and – depending on the ongoing discussions – into “rendering”.
Then, they will be checked for redundancies with respect to their semantics.
Three environments have been identified where the ontology will be useful:

• XCL, PLATO and Testbed have already incorporated the ontology into their
software to support certain actions. For example, the extractor tool of XCL
consults the ontology to derive canonical names for file properties.

• Therefore, these projects will act as test cases for further development
according to the user scenario document. E.g., it could serve as one
component of an expert system that helps preservation managers to obtain
information on risks for file-formats and tools.

• Finally, it could serve as a basic knowledge basis for the development of new
file-formats and tools, since it is supposed to hold comprehensive knowledge
about files and their environments. This could deter the developers of file-
formats from introducing strange new units and properties and could also
prevent them to define mistakable properties like “author” and “creator” or
“bitDepth” and “colourDepth”.

Nevertheless, it is essential to emphasise that the boon and bane of ontologies is,
that their contents are always expansible and they are never complete. The
PLANETS-ontology therefore only reflects the current state of discussions in its
class-structure and – considering the hundreds of file formats, tools and other criteria
for preservation-decisions – its contents will probably never be plenary.

16 Log in with username: anonymous and password: empty.

http://gforge.planets-project.eu/svn/xcltools/trunk/PLANETS_Ontology/
http://gforge.planets-project.eu/svn/xcltools/trunk/PLANETS_Ontology/

	Purpose of this document
	Previous work
	Ontology Sources
	Ontology Purpose
	Standards to be used
	Ontology integration
	Anonymous classes
	Non-transitive cardinality-restrictions:

	The Structure
	The basic concepts: Preservation concepts and file propertie
	Describing file properties with units and datatypes
	The concept of OWL:ObjectProperty

	The Terminology
	Common understanding of “Property” and “Characteristic”
	Observational and Extractable in the Planets Ontology
	Definition of Extractable Properties
	Definition of Observational Properties
	Approach to Terminological Problems
	Observational vs. Extractable
	Rendering properties
	Performance Properties

	Technical documentation
	The Planets-Ontology as a whole
	PLATO issues

	Outlook

