

Project Number IST-2006-033789

Project Title Planets

Title of Deliverable Validation Framework

Deliverable Number PP5/D4

Contributing Sub-project
and Work-package

SP/PP/5

Deliverable
Dissemination Level

External
Planets All

Deliverable Nature Software and Release Report

Contractual Delivery Date 31st March 2010

Actual Delivery Date

Author(s) Volker Heydegger
Christoph Becker

Keyword list

Digital Preservation, Preservation Planning, Tool support, Objectives, Requirements, Criteria,
Significant Properties, Technical characteristics, File format characteristics, Migration, Extraction,
Characterisation, XCL, XCEL, XCDL, Extractor, Comparator, Ontology, Evaluation, Validation,
Framework

Project: IST-2006-033789 Planets Deliverable: PP5/D1

Contributors
Person Role Partner Contribution
Volker Heydegger Author (lead) UzK 1.3, 2.2 (main contribution)

Christoph Becker Author TUW 2.1, 2.3, 2.4 (main contribution)

References

Ref. Document Date Details and Version
1 Report on methodology for specifying

preservation plans
31st July
2007

Planets PP4/D1 report
available at http://www.planets-
project.eu/publications

2 Christoph Becker, Hannes Kulovits, Mark

Guttenbrunner, Stephan Strodl, Andreas
Rauber, Hans Hofman. Systematic
Preservation Planning: Evaluating
potential strategies and building
preservation plans

December
2009

International Journal on Digital Libraries (IJDL).
DOI: 10.1007/s00799-009-0057-1

3 David Tarrant, Steve Hitchcock, Les Carr:
Where the Semantic Web and Web 2.0
meet format risk management: P2 registry.

October
2009

Contribution to: The Sixth International
Conference on Preservation of Digital Objects
(iPres 2009).
Available at http://eprints.ecs.soton.ac.uk/17556/

4 PRONOM Unique Identifiers. The National
Archives.

 website available at
http://www.nationalarchives.gov.uk/aboutapps/pro
nom/puid.htm

5 Specification of Basic Metrics and
Evaluation Framework

May 2007 Planets PP5/D1 report
Available at: http://planetarium.hki.uni-
koeln.de/planets_cms/deliverables

6 Christoph Becker, Hannes Kulovits,
Andreas Rauber, Hans Hofman. Plato: a
service-oriented decision support system
for preservation planning.

June 2008 In: Proceedings of the ACM/IEEE Joint
Conference on Digital Libraries (JCDL'08).
Pittsburgh, Pennsylvania, June 16-20, 2008.
(accepted for publication)

7 White Paper: Representation Information
Registries

January
2008

Planets PC3/D7 report
available at http://www.planets-
project.eu/docs/reports/Planets_PC3-
D7_RepInformationRegistries.pdf

8 Christoph Becker, Hannes Kulovits,
Michael Kraxner, Riccardo Gottardi,
Andreas Rauber, and Randolph Welte.
Adding quality-awareness to evaluate
migration web-services and remote
emulation for digital preservation

September
2009

Proceedings of the 13th European Conference on
Digital Libraries, ECDL 2009. LNCS 5714,
Springer.

9 Manfred Thaller (Ed.): The eXtensible
Characterisation Languages - XCL

May 2009 In: Kölner Beiträge zu einer
geisteswissenschaftlichen Fachinformatik, Vol.3
(1st edition), Hamburg: Dr.Kovac, 2009. (English
language)
Also published as Planets PC2/D12, PC2/D13,
PC4/D7 report:

eXtensible Characterisation Language Suite
Available at : http://planetarium.hki.uni-
koeln.de/planets_cms/deliverables
(The 2nd edition of both sources will be released
by the end of the Planets project, May 2010.)

10 Jan Schnasse, Sebastian Beyl, Elona
Chudobkaite, Volker Heydegger, Manfred
Thaller: XCL: The Extensible
Characterisation Languages - One Step
towards an Automatic Evaluation of
Format Conversions: ECDL 2008: 444-446

September
2008

In: Research and Advanced Technology for Digital
Libraries, Volume 5173/2008, pp. 444-446
(=Proceedings of the 12th European Conference
on Digital Libraries, ECDL 2008)
DOI: 10.1007/978-3-540-87599-4

11 PP4-D3 Report on service integration in
Plato2. Planets external deliverable

May 2008 Available at http://www.planets-
project.eu/docs/reports/Planets_PP4-
D3_ReportonServiceIntegrationInPlato-final.pdf

12 Manfred Thaller, Sebastian Beyl, Elona
Chudobkaite, Volker Heydegger, Jan
Schnasse: Significant Characteristics to
Abstract Content: Long Term Preservation
of Information.

September
2008

In: Research and Advanced Technology for Digital
Libraries, Volume 5173/2008, pp. 41-49
(=Proceedings of the 12th European Conference
on Digital Libraries, ECDL 2008)

Page 2 of 16

Project: IST-2006-033789 Planets Deliverable: PP5/D1

DOI: 10.1007/978-3-540-87599-4_5

13 Final version of Service Developers
Guidelines

March 2010 Planets IF6-D3 report
available at http://www.planets-
project.eu/docs/reports

EXECUTIVE SUMMARY

This document is the release report of the validation framework developed in the Planets project,
workpackage PP5. The validation framework connects the practical outputs of other Planets work-
packages, mainly those of PP4, PC2 and PC4, within a common framework: Preservation
requirements and criteria as they are defined in the objective trees in PP4 are mapped to the
technical characteristics described by XCL in PC2/4, and to other criteria such as performance and
format risks.

The validation framework consists of:

1. Comparison measures as basis for computing simple measurements or aggregated
measurements over several low-level characteristics

2. A mapping mechanism for connecting criteria to measurements related to technical
characteristics of both digital objects and tools,

3. Extension of the measurements to cover other measurable criteria of interest such as
format risks and runtime performance.

Aspects (1) and (2) were initially described in report PP5-D1, Specification of basic metric and
evaluation framework [5]. In the final version they are fully deployed within Planets software
components. (1) is a fundamental part of the Comparator tool, related to the XCL and its
components. (2) and (3) are part of the Planets Preservation Planning Tool (Plato). Since all parts
are strongly bound to Plato and the Comparator, the specifications of the comparison measures
and the evaluation framework are also integrated in the documentation part of these tools1.

1 Available at http://planetarium.hki.uni-koeln.de/planets_cms/ and http://www.ifs.tuwien.ac.at/dp/plato/

Page 3 of 16

Project: IST-2006-033789 Planets Deliverable: PP5/D1

This document briefly summarizes central issues of the validation framework and describes the
most important advancements of its parts: The comparison measures have been expanded in
order to enable comparison of text related information and to give a summary result, i.e. indicating
if a migration of content A to content B has been successful or not. The evaluation framework is
now integrated into Plato so that it extends to other technical aspects of interest, such as run-time
performance and format risks. To this end, we have developed a prototype of a quality-aware
migration engine (3) that is shortly described.

TABLE OF CONTENTS

1. Validation Framework ..5

1.1 Introduction..5
1.2 Components of the Validation Framework ..7
1.3 Comparison Measures ..8

2. Software: Tools and Components..12
2.1 Plato ..12
2.2 Comparator..13
2.3 Quality-aware Migration ..14
2.4 Risk Assessment...16

Page 4 of 16

Project: IST-2006-033789 Planets Deliverable: PP5/D1

1. Validation Framework

1.1 Introduction
A variety of tools performing preservation actions such as migration or emulation exist today; most
often, there is no clearly optimal solution, however. The complex situations and requirements that
need to be considered when deciding which solution is best suited for a given collection of objects
make this decision a complex one. Preservation planning aids in the decision-making process by
evaluating available solutions against clearly defined and measurable criteria. This evaluation
needs verification and comparison of documents and objects before and after migration, or during
emulation, to be able to judge migration quality in terms of defined requirements. It thus has to rely
on an analysis of the logical structure of objects that is able to decompose documents and describe
their content in an abstract form, independent of the file format. Especially considering migration
actions working on large numbers of objects, it is essential to validate the authenticity of
transformed objects automatically. When migrating a million documents from ODF to PDF/A,
validation of these objects cannot be done manually.

When comparing the content of two files stored in two different formats, we have to distinguish
between the abstract content and the way in which it is wrapped technically. On a very abstract
level, this will be impossible for a long time: whether an image of a hand-written note contains the
same ‘information’ as a transcription of that note in UTF-8 is philosophically interesting, but
scarcely decidable on an engineering level. In a more restricted way, a solution is possible if we
express the content stored in different file formats in terms of an abstract model of that type of
content.

The eXtensible Characterisation Languages (XCL) described in [9] support the automatic validation
of document conversions and the evaluation of conversion quality by hierarchically decomposing
documents from different sources and representing them in an abstract XML language. The
extraction language XCEL allows the Extractor component to extract the content of any document
provided in a format for which an XCEL specification exists. The content is described in the
description language XCDL and can thus be compared to other documents in a straightforward
way. This differentiates the XCL approach from the approach used by JHove and similar projects.
The XCL does not only attempt to extract a set of characteristics from a file, but it proposes to
additionally express the complete informational content of a file in a format-independent model.
Thus it supports the comparison of objects from different sources.

However, the question remains in which way the technical characteristics extracted from files
should be compared, and how to interpret comparison results. This document outlines the main
building blocks that are needed to answer these questions.

From the bottom-up, objects are characterised and based on these technical characteristics
expressed in the XCDL comparison metrics are computed. From the top, objectives for
preservation are defined, requirements that a preservation strategy must fulfil. A large part of these
refers to significant properties of the objects in question. These properties are broken down
according to common patterns, such as the five aspects ‘content, appearance, structure,
behaviour, and context’.

Still, a gap remains between these characteristics that come from the intellectual understanding of
objects and the technical characteristics extracted from files. This gap is closed from one side by
the comparison metrics mentioned above. The bridge from the other side consists of a mapping
between the requirements and the comparison metrics that connects the two trees (objective tree
from preservation planning; tree of extracted characteristics from characterisation) and thus
supports the automatic evaluation and validation of preservation actions.

Figure 1 schematically illustrates the conceptual layers of the validation framework and their
relationships, putting them in context with other work done in Planets. On the top, PP4 defines
requirements using the objective tree structure. These requirements deal in large parts with
significant properties of objects. On the leaf level of the tree, criteria such as the following may be
found:

Page 5 of 16

Project: IST-2006-033789 Planets Deliverable: PP5/D1

- The textual content of all documents shall be unchanged,

- The resolution of all images in all web pages must not change, or

- The Table of Content (TOC) must be preserved.

The lower the level in the tree, the more the objectives move from abstract intellectual concepts to
concrete, technically extractable and measurable criteria. Some are computable in a straight-
forward way, such as the width of images in pixels; others are more complicated. Still, it can be
imagined that an algorithm could be developed that is able to, for example, characterise a
document in such a way that the textual content can be compared across different file formats, or
an algorithm that compares the structure and content of tables across documents.
This is where, from bottom-up, the eXtensible Characterisation Languages comes in, extracting
technical characteristics from the actual objects. The eXtensible Characterisation Languages
essentially decompose objects and describe their content in an abstract form, independent of the
file format.

Figure 1: From objects to objectives: Mapping requirements to technical characteristics of objects

What is needed to connect these components is a framework that maps significant properties as
they are defined in the objective trees to the technical characteristics described by XCL. This is
done by the validation framework, i.e. its components, the evaluation framework and the
comparison measures. Both have been deployed as software components. The evaluation
framework is part of the Planets Preservation Planning Tool (Plato); the comparison measures are
deployed within the XCL, namely within the Comparator Tool, which is also integrated into the
Planets Interoperability Framework (IF) as one of the web services [9, 13].

Page 6 of 16

Project: IST-2006-033789 Planets Deliverable: PP5/D1

Not shown in this figure, but also relevant, is the connection of other branches of the requirements
tree to cover aspects, e.g., format risks and technical requirements, such as the performance of
tools, which are relevant to the decision making and can be measured automatically.

1.2 Components of the Validation Framework
The Planets preservation planning approach as it is described in [1] and implemented in the
planning tool Plato [6,11] defines requirements on preservation strategies in a hierarchical form,
using a tree structure called an ‘objective tree’. A significant part of these objectives is naturally
concerned with preserving specific criteria of the objects in question (usually referred to as
‘significant properties’).

Up until now, evaluation of how a preservation action has preserved – or destroyed – these criteria
and measurements of format risks and properties of the action components had to be performed
manually and entered into the decision support software during the planning process.

The main goal of the evaluation framework described here is to automate this evaluation process
and thus both reduce the level of effort required for evaluating potential preservation actions during
the planning procedure and improve the reproducibility of evaluation decisions.

As Figure 1 shows, a connection is needed between technical characteristics and intellectual
properties of objects. While the definition of comparison metrics provides one half of this link, a
connection between the criteria defined in objective trees and these metrics must be created as
well.

The validation framework thus provides a mapping mechanism from criteria to properties and their
corresponding comparison metrics. This is done by a three-step process.

1. First characteristics that are measurable for a file format, and the metrics that can be used
to compare them, are queried.

2. Second, these characteristics and the corresponding comparison metrics are mapped onto
criteria defined in the objective tree.

3. Third, during evaluation of preservation actions, the comparison service is accessed,
providing a list of characteristics to compare and the selection of comparison metrics.
These are used to compute the similarity between the objects that shall be compared.

The sequence diagram shown in Figure 2 illustrates this process in its basic form, showing the
main components of the validation framework. The preservation planner, who operates Plato
through a graphical user interface, sends a query for characteristics and their corresponding
metrics from the comparison service. The input parameter for this query is the input format
identified by a Pronom Unique Identifier (PUID) designating a Pronom format held in the
characterisation registry. As a response, Plato receives a list of characteristics that can be
measured in this format, and corresponding metrics for comparing these characteristics.

These characteristics are then mapped onto criteria in the objective tree. Screenshots of the user
interface that supports the mapping procedure in the planning tool are provided in Figures 6-9. The
user can map criteria such as the colour depth of an image to a technical characteristic named
‘bitDepth’. In a multi-step wizard, the planner is further able to select which comparison metric shall
be used to compare the transformed object to the original. This can be a simple binary test for
equality, but also a test for proportional deviation.2

The actual comparison of the original and the transformed objects takes place in the third step
where the comparison service is called, providing the objects to be compared and the properties
and metrics that shall be computed.

2 Cp. specification of measures (in [9], available at: http://planetarium.hki.uni-koeln.de/planets_cms/)

Page 7 of 16

Project: IST-2006-033789 Planets Deliverable: PP5/D1

sd Component interactions

GUI (Plato) Evaluator (Plato) Comparison
Service

Comparator
Registry

Comparator

getPropertiesAndMetrics(puid, ...) :List

retrieveList()

defineMapping()

performPreservationActionExperiment()

evaluate()

compare(original, transformed) :ComparisonResult

compare()

Figure 2: Sequence of interaction between the components of the validation framework

1.3 Comparison Measures

1.3.1 Motivation

As outlined in the previous chapter, the validation framework needs a connection between
technical characteristics and intellectual properties. One half of this link is provided through the
definition of adequate comparison measures.

Technical characteristics of digital objects, at least the most significant ones, are usually defined by
file formats, i.e. described in the file format specification and codified in a specific file. The
Extensible Characterisation Languages (XCL) [9] have been developed in order to enable the
extraction and representation of file format characteristics (syn. ‘properties’). The eXtensible
Characterisation Definition Language (XCDL)3, as one part of the XCL, allows for representation of
such properties; the eXtensible Characterisation Extraction Language (XCEL)4 is a generic
language for describing how to extract characteristics from files. Both language parts have been
designed with the goal in mind of making them usable in a ‘real’ practical way, i.e. to enable
dedicated software tools to process them. The Extractor tool extracts the content (i.e. the
properties) of files using an instantiation of the XCEL (a so-called XCEL description of a specific file
format) and finally writes down these properties to a file using the XCDL syntax. The XCDL file
which now contains a specific set of file format characteristics can then be compared by another
software component, the Comparator tool. The main goal of this tool is the automated evaluation of
file format conversions. One of the first steps towards such an automated comparison of file format
based characteristics is to define a set of appropriate measures, general enough to meet the
requirements for comparisons on file format level and particularly with regard to the specific
representation of properties provided by the XCDL.

3 Cp. [9], chapters 2, 9.1
4 Cp. [9], chapters 3, 9.2

Page 8 of 16

Project: IST-2006-033789 Planets Deliverable: PP5/D1

These requirements defined for the XCL also perfectly fit into the requirements for the validation
framework. Therefore, the validation framework uses the XCL tools and its descriptions, especially
the Comparator tool and the XCDL. The comparison measures are integrated into the Comparator
and utilized within the validation framework. Since the Comparator works on XCDL descriptions of
objects for comparison, the measures - at least in parts – are not totally detached from the XCL
concepts and partly reflect the structure and logic of XCDL-built files.

As a consequence for classification, the comparison measures are grouped into two main classes.
The first one, the group of basic measures, has already been defined in the initial specification of
the validation framework [5]. This category is relatively independent from the XCL implications and
comprises well-established measures which make use of fundamental mathematical concepts
(e.g., a simple boolean comparison on strings, so called ‘root mean squared error’ from the image
processing domain). These basic measures are most applicable for straightforward and elementary
comparisons (e.g., one-to-one related properties), where an isolated comparison result is needed
for a specific property and for a specific context. Within the evaluation framework, for example,
basic measures can be applied on properties along with the mapping wizard where a criterion is
connected to a measurable criterion derived from an XCDL description.5

While the set of basic measures is sufficient enough to meet the requirements of basic elementary
comparisons within the evaluation framework, it is not sufficient for complex comparisons.
Therefore, a second category of measures has been added, called structural measures. Metrics of
this group are more closely related to the XCDL structure, i.e. to specific elements, attributes and
logical concepts of the XCDL, in order to enable complex comparisons (see next section).

All measures are documented in detail within the XCL release [9]. For classification purposes, each
measure is assigned to a logical naming. The measure is verbally described, accompanied by
other essential information (allowed input and output XCL data types, XCL-specific ID(s), equation)
and an example is provided if considered necessary for understanding. Figure 3 shows an excerpt
from the measure specification part of the XCL documentation [9].

Measure name: levenshteinDistance

Id: 15, 41, 44
Explanation: The Levenshtein distance is a distance measure for strings. Two strings are compared with
respect to the three basic operations insert, delete, and replace, in order to transform string A into string
B. The value for this metric is the number of operations needed for transformation.
XCL data type of input value: string
XCL data type of output value: int

Example:

Consider these two strings:
byte
bit

The operations needed to transform ‘byte’ to ‘bit’ are e.g.
1. byte -> bite (Replace ‘y’ with ‘i’)
2. bite -> bit (Delete ‘e’)
In this example, the Levenshtein distance is: dlev = 2.

Figure 3: Excerpt from metrics specification for measure ‘levenshteinDistance’.

For details on how to obtain the XCL documentation and software, including the Comparator Tool
and the measure specification, see chapter 2.2 below.

5 Cp. section 2.1

Page 9 of 16

Project: IST-2006-033789 Planets Deliverable: PP5/D1

1.3.2 Enhancements

1. Definition of Structural Measures

In the initial report [5] we defined a basic set of comparison metrics which enable operation on a
certain number of categories of comparison. These are comparisons on the level of

1) single properties (one-to-one)
2) sets of properties (one-to-many, many-to-many)
3) references of property values to XCL normalised data
4) complex objects (nested objects, related objects)
5) XCDL data categories (labelled values, normalised data)
6) XCDL data types
7) ‘nature’ of property occurence (property with single value, set of values)
8) multiple relations between categories 1 – 7 (which make up the entire digital object)

The basic set of metrics is sufficient enough to satisfy the fundamental requirements of the
validation framework as defined in [5]; it meets the categories 1, 5, 6 and partly 7 (single values
supported).

However, to meet the requirements for comparison on the rest of the identified levels, the existing
set of basic metrics had to be extended. New measures, operating on additional structural parts of
the XCDL descriptions, have now been added to the existing set, arriving at the definition of
measures which are called structural measures.

We classified the new measures as ‘structural’ since they operate on the XCDL structure, i.e. on
certain elements and attributes of the XCDL syntax in combination with the file-extracted value(s)
for a specific property. To make this more evident, consider the following example.

Let us assume a text contains three different fonts (e.g., Arial, Times, Courier style). The XCL
Ontology6 defines ‘font’ and its associated information as a set of specific properties of text. A PDF
file as well as a DOC file contains this font information in its encoded bytestream. With the help of
the XCL tools it is possible to extract this information and to represent it using the XCDL syntax.

 <property id="p19" source="raw" cat="descr">
 <name id="id159">fontName</name>
 <valueSet id="i_i1_s185">
 <labValue>
 <val>Arial</val>
 <type>string</type>
 </labValue>
 <dataRef ind="normSpecific" propertySetId="o1_id_4"/>
 </valueSet>
 <valueSet id="i_i1_s263">
 <labValue>
 <val>Courier</val>
 <type>string</type>
 </labValue>
 <dataRef ind="normSpecific" propertySetId="o1_id_5"/>
 </valueSet>
 <valueSet id="i_i1_s324">
 <labValue>
 <val>Times</val>
 <type>string</type>
 </labValue>
 <dataRef ind="normSpecific" propertySetId="o1_id_0"/>
 </valueSet>
 </property>

Figure 4 : XCDL representation of property ‘fontName’.

6 Simply spoken, the XCL Ontology is a controlled vocabulary where relations between object categories are modelled.
According to the Ontology, ‘font’ (property) is related to text (object) as ‘font is a property of text’. See [9], chapter 4 (‘XCL
Ontology’) for more.

Page 10 of 16

Project: IST-2006-033789 Planets Deliverable: PP5/D1

Figure 4 shows an exerpt from an XCDL description of such font information (in this case the
naming of fonts) extracted from a file.

One task within an evaluation action could be to find out if this specific font information (‘fontName’)
has changed or not, assuming a conversion scenario where, e.g., the text which is originally stored
as a Microsoft Word file (in short: DOC file) is converted to a PDF file. For this purpose, each
binary file, the (source) DOC file and the resulting (target) PDF file, is extracted to an XCDL
representation.

Assuming a ‘normal’ conversion where the result of the conversion process turned out to be as
expected, i.e. three different font names are associated with the three fonts used in the text. The
resulting XCDL descriptions for both files then contain a property ‘fontName’ not only with one but
with three values: ‘Arial’, ‘Times’ and ‘Courier’. These three values are expressed as three
repeating structures within the XCDL description (a tagset <valueSet> is inserted for each value).

In order to find out now whether the font names and their number have changed we first need to
know if the number of value sets (and thus the number of <valueSet> elements) is the same in both
XCDLs. Secondly, the actual values have to be compared.

This example is a typical case where the application of metrics from the set of basic metrics is not
possible, since factors which are expressed in the XCDL syntax have to be taken into account.
Therefore, it is necessary to define measures which are able to cope with circumstances such as
multiple property values. Exactly this is done with introducing the structural measures. They
combine comparisons of such structural factors with the comparison of ‘real’ values (the property
values extracted from the binary files), i.e. they actually summarize the results of application of
different structural and basic measures.

2. Extension of Measures for Handling Comparisons of Content from Different Information Domains

The extension of the basic measures towards the definition of structural measures is very closely
related to a second main enhancement of the comparison measures. In the initial version of the
validation framework, it was only possible to compare content of objects containing image-related
information. This has now been extended to objects containing text-related information. In terms of
file formats this means that the measures of this version are now able to handle content of image
file formats, text-based formats and, by release of the final version of the XCL tools7, audio file
formats.

Structural measures are often related to content from the text information domain. This is a result of
the nature of this kind of information: a text based format often contains text with more
sophisticated formatting (as demonstrated in the example before); image information by contrast is
in almost all cases ‘simple’ in the way that image properties have a single value (an image has
exactly one width, height, bitDepth, etc.). Additionally, there are almost no cross-references of
properties as is typical for text-based information. For example,, if different fonts are used, they
refer to different parts of the text: There may be a paragraph starting with characters in font-style
‘Times New Roman’ followed by a text section where font-style ‘Courier New’ is used. These
issues are also handled by the structural measures.8

The fundamental difference in the nature of the information from different domains also makes it
necessary to introduce additional basic measures: the information contained in audio data is totally
different from image data. Comparing audio data with a measure from the image data domain, e.g.
the root mean squared error would not make much sense since audio data is related to frequencies
and not to pixel data. In a similar way, it is also necessary to define appropriate measures for text
data. This has also been introduced in the updated version of the comparison measures.

7 At the end of May 2010.
8 Cp. [9], chapter 9.6.1.2.2, where measures which relate to such references are defined.

Page 11 of 16

Project: IST-2006-033789 Planets Deliverable: PP5/D1

2. Software: Tools and Components

2.1 Plato
The planning tool Plato is a decision support tool that implements the Planets Preservation
Planning method [2] and integrates services for content characterisation, preservation action and
automatic object comparison in a service-oriented architecture to provide maximum support for
preservation planning endeavours [6].

Plato is freely available as a web application at:

www.ifs.tuwien.ac.at/dp/plato

Extensive documentation is available at the website.

The core part of the planning approach is the definition and evaluation of requirements in the
objective tree. To this end, a tree editor is provided in the software, with two-way integration of
mind-mapping software as an additional interface option. On the criteria level, measurements can
be specified by creating a connection as outlined in Figure 5.

The next figures show the mapping wizard that connects a criterion to a measurable criterion in
XCDL. In the tree editor, the column to the right indicates the status of mapping. Activating it starts
the mapping wizard.

Figure 5: Starting the mapping wizard in Plato

Figure 6: Selecting a property to be mapped

Page 12 of 16

Project: IST-2006-033789 Planets Deliverable: PP5/D1

Figure 7: The basic metric ‘equal’ that measures equality

Figure 8: Root mean squared error (RMSE)

Figure 9: Mapped properties are visually indicated in the column Mapping

2.2 Comparator
Comparator is one of the two software tools of the XCL Suite [9]. It is able to compare properties of
digital objects as described through their representation as files.
From a technical point of view, it processes files that contain the properties of digital objects in a
specific language expressed in XML, the eXtensible Characterisation Definition Language (XCDL).
XCDL files are currently created by the Extractor, the XCL tool that is able to extract properties
from files with the help of the eXtensible Characterisation Extraction Language (XCEL).9

9 XCDL descriptions do not have to be created necessarily by the Extractor software. Another approach for creating XCDL
descriptions by means of XSLT is currently under work (transforming JHove output to XCDL). This will be finished by end of
April 2010, and published as internal Planets report PC4-D14 and additionally integrated into the second edition of [9], end
of May 2010.

Page 13 of 16

Project: IST-2006-033789 Planets Deliverable: PP5/D1

For its comparison algorithms the Comparator uses the comparison measures defined within the
validation framework.

Comparator targets three application scenarios. These are

1. Automated evaluation of large-scale file format migrations (conversion), in association with
XCL tools and functionalities.

2. Support of preservation planning tasks within the validation framework.
3. Support of experiments conducted via the Planets testbed.

For application scenario 1, a stand-alone command-line tool is available. For the other two target
applications, Comparator has been wrapped as a web service by the Planets Interoperability
Framework (IF). The interfaces defined in [5] (‘Metrics toolbox and interfaces’) have been fully
integrated into the IF. For a detailed specification and description see [9], chapter 6 (‘XCL in
Planets’) and [13].

All major (alpha) releases of the Comparator can be obtained from:
http://planetarium.hki.uni-koeln.de/planets_cms/comparator-command-line-tool

Additionally, minor versions in beta status can currently be downloaded from:
http://gforge.planets-project.eu/gf/

Comparator and the XCL tools and components are open source. 10

Both sources include detailed documentation of the Comparator tool and the associated
comparison measures.

2.3 Quality-aware Migration

Figure 10: Core elements of the monitoring framework

To cover other aspects of interest, such as performance, we have developed a framework for
quality-aware migration. The minimal migration engine MiniMEE is integrated in the planning tool

10 It is intended to move Planets gForge to the SourceForge platform (http://sourceforge.net/) at the end of the Planets
Project, May 2010.

Page 14 of 16

Project: IST-2006-033789 Planets Deliverable: PP5/D1

and can be accessed through the planning workflow. It has been presented and described in detail
in [8].

Figure 10 shows a simplified abstraction of the core elements of the monitoring design and their
relations.

The key elements are Services, Engines, and Evaluators, which are all contained in a Registry.
Each Engine specifies which aspects of a service it is able to measure in its
MeasurableProperties. The property definition includes the scale and applicable metrics for a
property, which are used for creating the corresponding Measurements. Each Engine is deployed
within a specific hardware Environment that shows a certain performance. This performance is
captured by the score of a Benchmark, which is a specific configuration of services, and Data,
aggregating measurements over these data to produce a representative score for an environment.
The benchmark scores of the engines’ environments are provided to the clients as part of the
service execution metadata and can be used to normalise performance data of migration tools
running on different hardware platforms.

The Services contained in a registry are not invoked directly, but run inside a monitoring engine to
enable performance measurements. This monitoring accumulates Experience for each service,
which is collected in each successive call to a service and used to aggregate information over time.
It thus enables continuous monitoring of performance and migration quality. CompositeEngines are
a flexible form of aggregating measurements obtained in different monitoring environments. This
type of engine dispatches the service execution dynamically to several engines to collect
information. This is especially useful in cases where measuring code in real-time actually changes
the behaviour of that code. For example, measuring the memory load of Java code in a profiler
usually results in a much slower performance, so that simultaneous measurement of memory load
and execution speed leads to skewed results. Fortunately, in this case there is a way around this
uncertainty relation – forking and distributing the execution leads to correct results.

The bottom section of Figure 10 illustrates some of the currently deployed performance monitoring
engines.

1. The ElapsedTimeEngine is a simple default implementation measuring elapsed (wall-clock)
time.

2. The TopEngine is based on the Unix tool top11 and used for measuring the memory load of
wrapped applications installed on the server.

3. On Windows servers, the PsListEngine relies on PsList12 to obtain the same information.
4. The TimeEngine uses the Unix call time13 to measure the CPU time used by a process.
5. Monitoring the performance of Java tools is accomplished by a combination of the

HProfEngine and JIPEngine, which use the HPROF14 and JIP15 profiling libraries for
measuring memory usage and timing characteristics, respectively.

Additional engines and composite engine configurations can be added dynamically at any time.
Notice that while the employed engines focus on performance measurement, in principle any
category of dynamic QoS criteria can be monitored and benchmarked.

In contrast to performance-oriented monitoring through engines, Evaluators are used for comparing
input and output of migration tools to compute similarity measures and judge migration quality. The
ImageCompareEvaluator relies on the compare utility of ImageMagick to compute distance metrics
for pairs of images. The more generic XCLEvaluator uses the eXtensible Characterisation
Languages and compares different XCL documents for degrees of equality as described above.
The measurements obtained through evaluators are deposited in the metadata of the migration
result and are analysed in the analysis phase of the planning workflow.

11 http://unixhelp.ed.ac.uk/CGI/man-cgi?top
12 http://technet.microsoft.com/en-us/sysinternals/bb896682.aspx
13 http://unixhelp.ed.ac.uk/CGI/man-cgi?time
14 http://java.sun.com/developer/technicalArticles/Programming/HPROF.html
15 http://jiprof.sourceforge.net/

Page 15 of 16

Project: IST-2006-033789 Planets Deliverable: PP5/D1

2.4 Risk Assessment

Risk assessment of file formats is another key aspect of evaluation. Criteria about file formats,
which have since long been in the focus of analysis in the digital preservation community,
are suitable to be described in publicly accessible registries maintained by institutions with long-
term commitment and substantial resources for evaluating certain aspects of formats.
Tarrant [3] presented the P2 registry16 which uses Semantic Web technologies to combine the
content of PRONOM, represented as RDF, with additional sources such as DBpedia. The P2 fact
base currently contains about 44.000 RDF statements about file formats and preservation tools.
Figure 11 shows some of the facts known about PDF 1.4. P2 contains a risk calculation model,
where the organisation’s preferences are captured in a risk profile that models the sensitivity of the
organisation to certain risk factors. The outcome is a numerical risk score alongside a summarising
analysis of the factors [3]. In our approach in Planets, the utility function fulfills this role by
transforming the measurement of each criterion according to the acceptance thresholds of an
organisation and thus together with the weighting of factors models the risk aversion curve of the
institution. This in turn is influenced by the policy settings defined by the organisation.

Figure 11: RDF graph showing some of the facts known about PDF 1.4

The P2 knowledge base has been integrated into the planning tool Plato and allows the automated
evaluation of certain risk factors. For example, to extract the disclosure of a file format, the
following SPARQL code fragment is used.

prefix pronom: <http://pronom.nationalarchives.gov.uk/#>
prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
SELECT ?d WHERE {
?format pronom:FormatDisclosure ?d .
?format pronom:FileFormatIdentifier ?ident .
?ident pronom:IdentifierType "PUID" .
?ident pronom:Identifier $PUID$
}

This further contributes to the coverage of automation in the preservation planning procedures and
to the completeness of the validation framework.

Further information about these aspects as well as a full release report of the planning tool will be
included in the final deliverable of PP4, the release 3.0 of the planning tool Plato.

16 http://p2-registry.ecs.soton.ac.uk/

Page 16 of 16

	Validation Framework
	1.1 Introduction
	1.2 Components of the Validation Framework
	1.3 Comparison Measures

	2. Software: Tools and Components
	2.1 Plato
	2.2 Comparator
	2.3 Quality-aware Migration
	2.4 Risk Assessment

