
The Planets Interoperability Framework

An Infrastructure for Digital Preservation Actions

Ross King1, Rainer Schmidt1,
Andrew N. Jackson2, Carl Wilson2, and Fabian Steeg3

1 Austrian Research Centers GmbH - ARC
Donau-City-Strasse 1
1220 Vienna, Austria

firstname.lastname@arcs.ac.at
2 The British Library

Boston Spa, Wetherby, West Yorkshire
LS23 7BQ, United Kingdom
firstname.lastname@bl.uk

3 Universität zu Köln
Albertus-Magnus-Platz

50923 Cologne, Germany
fabian.steeg@uni-koeln.de

Abstract. We report on the implementation of a software infrastructure
for preservation actions, carried out in the context of the European In-
tegrated Project Planets – the Planets Interoperability Framework (IF).
The design of the framework was driven by the requirements of logi-
cal preservation in the domain of libraries and archives, which include
durable and scalable infrastructures for the characterisation and migra-
tion of digital documents, and emulation of digital environments. The
IF is a Java-based software suite built on a number of open source com-
ponents and Java standards such as Java Platform, Enterprise Edition
(Java EE 5) and JSR-170 (Java Content Repository API). Specific fea-
tures of interest include a web service architecture including specified
preservation service interfaces for the integration of new and existing
preservation tools, a workflow engine for the execution of flexible preser-
vation plans, and a Job Submission Service (JSS) for managing compu-
tationally intensive preservation actions on millions of digital objects.

1 Introduction

This paper describes a software infrastructure developed in the context of the
EU Integrated Project Planets known as the Planets Interoperability Framework
(IF). In general, the Planets project concentrates on the questions of logical
preservation (as opposed to bit-stream preservation), providing tools for the
characterization and migration of digital objects as well as emulation tools for
accessing original digital objects. A more detailed overview of the Planets project
can be found elsewhere [1].



One of the visions of the Planets project is to provide a majority of project
results in a single downloadable package, which should be simple to install,
configure, and administer - the Planets Software Suite. When this package is
deployed, establishing a Planets Instance, an administrator should be able to
create user accounts, deploy and browse services, and administer data registries.
A preservation expert should be able to define preservation workflows, define
and evaluate preservation plans (Preservation Planning Application), as well as
define and run preservation experiments. A librarian or archivist should be able
to define and test preservation plans and execute preservation workflows on a
repository.

The Planets IF supports this vision by providing the technical backbone for
registries, services, and applications developed within the project, as well as
standard software components such as authentication and authorization, web
service provisioning, and data persistence.

This paper is organized as follows: we first present a short overview of other
software infrastructures in the digital preservation domain. We then give a de-
tailed description of the Interoperability Framework’s design, components, and
implementation details, followed by a specific discussion of our approach to
achieving performance and scalability. We conclude the paper with an outlook
on the testing and evaluation work to be carried out with the Interoperability
Framework during the final year of the Planets project.

2 State of the Art

Digital preservation, and in particular the aspect of logical preservation, became
a significant topic within the European Union’s ICT 6th Framework Programme.
There the DELOS Network of Excellence Preservation Cluster continued work
that was pioneered within ERPANET. Results from this project provided for
example methodologies for evaluating and testing preservation plans [2], laying
the groundwork for preservation projects that followed like Planets and CAS-
PAR4. These were followed by a new generation of projects funded under the
ICT 7th Framework Programme, including PrestoPRIME5, KEEP, PROTAGE6,
and SHAMAN7.

In contrast to the content-agnostic approach of Planets, which is driven by
the needs of national libraries and archives, PrestoPRIME will address long-
term preservation of and access to digital audio-visual content by integrating
media archives with European on-line digital libraries. The Keeping Emulation
Environments Portable (KEEP) project extends work on emulation in Planets
and will create portable emulators enabling access to and use of software that
requires outdated computer hardware and the digital content that relies on it.

4 http://www.casparpreserves.eu/
5 http://wiki.prestospace.org/pmwiki.php?n=Main.PrestoPRIME
6 http://www.protage.eu/
7 http://shaman-ip.eu/



The PROTAGE (PReservation Organizations using Tools in AGent Environ-
ments) project plans to build and validate a system based on software agents
that can cooperate with and be integrated in existing and new preservation sys-
tems. SHAMAN - Sustaining Heritage Access through Multivalent ArchiviNg -
aims at providing a comprehensive long-term preservation system, also consid-
ering Grid and virtualisation techniques for scalability as in Planets (refer to the
subsection on Performance and Scalability below).

One cannot address preservation architectures without mentioning the Open
Archival Information System standard [3]. Significant effort in the preservation
community has been dedicated towards producing OAIS-compliant archiving in-
frastructures, although OAIS itself is primarily a conceptual model and does not
provide guidelines for implementation. The Planets project has concentrated on
the specific OAIS component “Preservation Planning”. The CASPAR project [4]
places an emphasis on representation information.

One component of the overall CASPAR architecture that is comparable to
the Planets Interoperability Framework is the Preservation Data Store (PDS) [5].
The PDS approach delegates preservation-related functionality to the storage
component, under the hypothesis that this will increase the robustness of the dig-
ital preservation system and its ability to protect against corruption or loss. Sim-
ilar to Planets, the PDS architecture supports integration with existing archives.
However, PDS lacks the flexibility of the Planets IF plug-in approach to preser-
vation tools and workflows.

One of the earliest OAIS-based preservation systems is the e-Depot [6] of
the National Library of the Netherlands, based on IBM’s Digital Information
Archiving System (DIAS) [7] infrastructure. The DIAS system provides for au-
tomatic ingest (creation of AIPs from SIPs in the OAIS model) of digital objects
from multiple sources. DIAS also makes use of the concept of the View Path as
a method for both archiving representation information for objects and for iden-
tifying digital obsolescense. However, DIAS does not provide for the execution
of preservation actions within the archive; the Planets IF would be a sensible
extension of DIAS-based systems by providing this functionality.

Another project based on the OAIS reference model is the National Geospa-
tial Digital Archive [8], part of the U.S. Library of Congress’ National Digital
Information Infrastructure and Preservation Program (NDIIPP). The system
provides several web-based tools, including a proprietary collaborative format
registry and workflow tool for managing the ingest process. Because the system
is concerned with data rather than documents, preservation actions like char-
acterisation, migration, and emulation are ignored in favor of normalisation –
the conversion of the source object from its original data format into an open,
preservation-friendly archival format.

The National Archives of Australia have defined a preservation approach [9]
which also strongly builds on normalisation. Their work has resulted in the open
source tool XENA8, which can convert a large number of digital input formats
to an XML-based archival format. In other words, XENA is a specific instance

8 http://xena.sourceforge.net/



of a preservation migration tool, and as such, it has already been “wrapped” as
a Planets Service (refer to the subsection on Planets Service Interfaces below)
and integrated with the IF infrastructure.

The closest parallels to the Planets approach are the Australian project
PANIC (Preservation services Architecture for New media and Interactive Col-
lections) [10] and The United Kingdom’s National Archives Seamless Flow frame-
work [11]. Both are based on service-oriented architectures (SOA) in which
preservation actions are invoked through Web Services. These actions are semi-
automatically invoked based on comparing the preservation metadata of digital
objects against technical registries; in the case of Seamless Flow, this is based
on the PRONOM9 registry, whereas PANIC has an open interface allowing in-
tegration with various registries, such as Harvard University Library’s Global
Digital Format Registry10. PANIC also distinguishes itself in making use of Se-
mantic Web Services, using an OWL-based ontology for matching services with
preservation actions. The Planets Interoperability Framework is flexible enough
to support applications of this nature, but is presently focused on supporting the
OAIS approach to preservation planning, by executing institutional Preservation

Plans, which are the output of tools such as PLATO [12].

3 The Planets Interoperability Framework

3.1 Motivation

A preservation system has the following three objectives [6]

– Identifying objects that are in danger of digital obsolescence.
– Planning and carrying out technical preservation actions.
– Defining the necessary technical metadata in order to provide an environ-

ment needed for digital object delivery and access.

The Interoperability Framework fulfills the second objective by providing an
infrastructure to carry out digital preservation actions in the form of flexible,
service-based workflows. Planets is driven by the requirements of memory in-
stitutions, primarily national libraries and archives. These institutions generally
already have archiving systems in place, which are often custom solutions or
based on commercial tools. Replacing such systems is neither feasible nor de-
sirable. Therefore the IF was designed to run in parallel with existing archive
systems; it is in no way meant to replace these or even to provide archiving
functionality.

The Interoperability Framework architecture has also evolved to support two
conflicting requirements. On one hand, the system should accommodate preser-
vation (potentially commercial) services that are hosted by third-parties – hence
a web service architecture is ideal. On the other hand, the system should also

9 http://www.nationalarchives.gov.uk/pronom/
10 http://www.gdfr.info/



support large-scale processes that involve millions of digital objects and therefore
must be local due to network bandwidth restraints.

In addition, there are a number of functions that multi-tier applications com-
monly need. These include data persistence, user management, authentication
and authorization, monitoring, notification, and logging. There are also are some
non-functional requirements on the infrastructure, which should be robust, scal-
able, and distributed. The Planets Interoperability Framework software infras-
tructure was designed to provide these commonly required functions and meet
these non-functional requirements. For preservation applications, such as the
PLATO preservation planning tool [12] or the Planets Testbed Application [13],
the IF provides for common requirements on the Service Registry, Workflow
Execution Engine, and Planets Service Interfaces, which are described in detail
below.

There are two primary advantages to the IF approach: efficiency and inter-
operability. Because the above mentioned components are only developed once,
the other Planets components and applications have been able to concentrate
on their specific process logic. Also, when packaging the Planets software, the
number of components will be optimized; for example, because the IF provides a
single relational database management system for all components, only one such
system need be installed. Finally, by providing common components, the IF can
also help to assure that various applications remain interoperable. By enforcing
Web Service standards, the IF can support access to remote and distributed
third-party preservation action services.

3.2 IF Components

In the following sub-sections we describe a selection of IF components and their
functionality. Refer to the Business Layer of figure 1.

Data Registry The Data Registry provides storage and persistence services to
IF users, components and services via a consistent API. In particular the API
provides methods for storing Digital Objects and Preservation Events. Storage
of and access to files and metadata by services and applications is managed
through Data Registries.

An IF instance installs a pre-configured Data Registry built upon the Apache
Jackrabbit implementation of the Java Content Repository API. Additionally an
IF administrator can create additional file system based Data Registries through
an administration interface. These file based instances provide convenient, con-
sistent access to local or network accessible disk storage.

Binary data can be stored by value or by reference. Storage by reference is
often preferable to avoid the overhead of submitting and accessing large binary
objects through Jackrabbit.

The Data Registry controls the IFs shared storage area, i.e. common network
storage accessible by all IF components. Each registered user has their own
storage area within Jackrabbit in which they can:



– Add content file references and associated metadata.
– Save references to files created by workflow tasks.
– Persist Digital Objects and associated metadata.
– Save metadata generated by workflow tasks.
– Search content and define filesets.

In addition there is a common area allowing users to share their content and the
results of preservation actions with other registered users. The IF also provides
a web-based Data Registry GUI which allows users to:

– Browse content and metadata in both the common area and their private
area.

– Create, delete and modify digital objects in the data registry, depending
upon their access rights.

– Import and export sections of their private area to and from the shared area
or to other, file system based Data Registries.

– Search content and metadata by XPath/XQuery.

Fig. 1. Planets Interoperability Framework Architecture

Service Registry The Service Registry enables users and service providers to
look up and publish information about preservation services, and enables Plan-
ets system administrators to manage information about Planets Services. This



information can be used to dynamically select and invoke simple services, as
well as to reuse them as part of choreographed complex workflows (refer to the
section Workflow Execution Engine). In order to support service discovery, the
Service Registry contains information about services and the publishers that
provide them. Moreover, it provides extensible, schema- or ontology-based ser-
vice categorization mechanisms that allow the Service Registry to be queried
using these categories. Finally, in order to invoke or reuse services, the Planets
Service Registry contains information about the service interfaces, operations
and parameters.

The Service Registry has two main components: the Service Registry backend
which processes requests from clients, and the Service Registry user interface,
which is implemented as a Web application using Java Server Faces (JSF) and is
integrated within the IF administration user interface. The user interface allows
administrators to browse, add, update, and delete items stored in the Service
Registry. Planets Services can also be registered automatically in the registry
based on the Planets Service Description they provide, either via the user inter-
face or the API.

On the technical level, the IF contains two optional Service Registry back-
end implementations: a UDDI version 2.0 compliant implementation based on
Apache jUDDI that is accessed via the Java API for XML Registries (JAXR,
using the Apache Scout implementation), and a lightweight persistence mecha-
nism based on Planets Service Descriptions which provides a simple and flexible
query-by-example functionality (e.g. to find services that migrate from PDF to
JPG, or services based on the JHOVE11 tool, etc.). Both Service Registry back-
end implementations provide a Java API as well as language-independent access
via SOAP-based Web Services.

Workflow Execution Engine A preservation workflow consists of a sequence
of activities, carried out in a specific order, in which the output parameters of
one action are validly mapped to the input parameters of the following action.
An example of a Planets workflow would be: for a given file, first identify a file
format, then validate the format, then characterize it, then migrate it to a new
format, then characterize the new file, then compare with the original. Each
of these steps could be carried out by a different component or service in the
Planets architecture; hence, the orchestration of these services is required.

We surveyed service orchestration approaches and experimented with WS-
BPEL (Web Service Business Process Execution Language). WS-BPEL is an
XML-based workflow description language for SOAP-based Web services. The
language is an official OASIS standard12 and has strong industry support. Within
the IF, experimental preservation workflows have been implemented using WS-
BPEL v2.0 definitions and JBPM BPEL (JBoss Business Process Management
module)13 as a Workflow Execution Engine. This approach provided a large

11 http://hul.harvard.edu/jhove/
12 http://www.oasis-open.org/committees/wsbpel/
13 http://docs.jboss.com/jbpm/bpel/v1.1/



degree of flexibility and allowed the specification of preservation processes at
a low (i.e. messaging) level using Web service standard languages like BPEL,
XML, XPath, and WSDL. The Eclipse BPEL Visual Designer, an IDE plugin
adding comprehensive support for the definition and authoring of BPEL pro-
cesses, served as a graphical interface for visualizing the process flow (e.g. invo-
cations, branching, iterations). However, work in this direction was hindered by
two difficulties; first, that the BPEL language is very powerful but also low-level
and hence very complex; and second, at the time we conducted the experiments,
BPEL related-tools proved to be not yet mature. Both points turned out to be a
major hindrance for implementing preservation workflows by non-BPEL experts.

Consequently, we chose to implement a much simplified, custom workflow
description language and corresponding execution engine. The main aim of this
approach is to shield the user from the complexity of the underlying architecture
and implementation issues allowing non-experts (i.e. librarians and archivists)
to create and execute preservation workflows. The WEE-Registry allows one to
choose from various abstract workflow scenarios (templates). Workflow templates
can be easily assembled from existing Java components that may act upon a
preservation service or provide utility functions such as metadata manipulation.
Using the WEE, selected workflow templates can be dynamically configured and
executed based on simple XML descriptions.

The Planets IF workflow engine implements a component-oriented enactor
that governs the orchestration of the various preservation components, including
functionalities like session-management, communication, and preservation meta-
data handling. Distributed preservation workflows are conducted from high-level
components that abstract the underlying protocol layers. From the user’s point of
view, the IF workflow execution engine provides high-level interfaces for discov-
ering, configuring, and instantiating preservation workflows. The WEE performs
workflow execution asynchronously and may deliver status information to the
user based on inquiry and Email-notification capabilities.

Planets Service Interfaces The Planets Interoperability Framework defines
a tiered approach to the problem of creating digital preservation services and
workflows.

When implementing digital preservation services, developers initially wish to
concentrate on low-level concepts and actions. The Planets IF level-one service
interfaces define basic digital preservation verbs, for example Identify (format
identification), Validate (format validation), and Migrate (format migration).
These interfaces perform actions upon single byte sequences without concerning
the developer whether the bytes represent an image from a web page or a page
from a book. They return results and status as simple structured types. It is
possible to develop and deploy level-one services in a variety of environments
using a variety of programming languages, and tools.

The interfaces are intended to be lightweight and simple to implement and
share a set of common features:

– Operations are atomic.



– Operations have no requirement to store state.
– Operations have no requirement to handle transactions.
– Planets service data types are used for parameters and returns.
– Binary data is handled using a Planets Digital Object instance.

As the workflows a user wishes to implement become more sophisticated, there
is a requirement to consider the data management aspect within a repository. In-
stitutions view and model their digital collections in different ways and mapping
even simple concepts to an institution’s model can be time consuming.

To accommodate these institutional models, the IF supports level two ser-
vices which implement digital preservation workflows. These higher level services
operate upon and decompose institutional data model instances and map these
concepts to the simple level-one interfaces. They provide the high-level activi-
ties and the necessary control structures required for data model manipulations,
metadata mapping, and handling the serialization back to an institution’s digital
repository.

3.3 Implementation Details

The Interoperability Framework provides a Java-based infrastructure that lever-
ages a number of standards and open source tools. Referring to the Java Tech-

nologies indicated in figure 1, the core of the IF implementation is the Java
Platform, Enterprise Edition (Java EE 5) standard, which among other things
provides a framework for the efficient implementation of Web Services and Web
applications. It particular we make use of Sun Microsystems’ Web Services In-
teroperability Technology (WSIT) suite and the underlying JAX-WS (Java API
for XML Web Services) standard. The IF provides a pre-configured JBoss14 ap-
plication server as its default deployment environment. We chose JBoss as the
most stable, best-supported open source implementation of the Java EE 5 stan-
dard. We also make use of JOSSO15 (Java Open Single Sign-On), which provides
single-sign-in authentication and authorization for all web applications deployed
on the IF.

Another significant IF component is the Apache Jackrabbit16 implementa-
tion of the Java Specification Request 170 (JSR-170) specification of the Java
Content Repository (JCR) Application Programming Interface (API). The IF
Data Registry component is built on top of the JCR API, adding specific func-
tionality for persisting digital objects, as described in the previous section.

The underlying data persistence is provided through the Apache Derby17

relational database management system (RDBMS). Derby was chosen because
its small footprint and pure Java implementation allow it to be easily packaged
and installed with minimum user expertise. However, as we use only the standard
Java Database Connectivity (JDBC) API and no RDBMS-specific features, it is

14 http://www.jboss.org/
15 http://www.josso.org/
16 http://jackrabbit.apache.org/
17 http://db.apache.org/derby/



possible to configure the IF for operation with other open-source or commercial
databases in a production environment. Access to the database layer is provided
in many ways: directly, through a JDBC connector, through EJB 3.0, through
the Java Persistence API (JPA - as implemented by the the Hibernate object-
relational mapping tool), through the JCR API, or through the Data Registry
API.

The IF application server supports a variety of web presentation layer tech-
nologies, but we have specifically recommended that application developers make
use of Java Server Faces (JSF), first of all because it is a standard (presently in
version 1.2, based on JSR-252) with wide community support, because it offers
a clean separation between behavior and presentation, and because it can be
easily integrated with the Java Portlet specification (JSR-168). As a result, JSF
has been adopted by all of the major applications in the project, including the
Interoperability Framework’s own administration user interfaces.

In order to test, build, package, and distribute Planets results within a single
software package, we have established an infrastructure for distributed software
development, code management, and bug tracking. Unsurprisingly, we have cho-
sen a framework used primarily for the development of open-source projects,
GForge18 (open-source software created for SourceForge), together with the re-
vision control system Subversion19 (SVN). In order to support a wide user base,
the entire IF infrastructure can be downloaded as a single file from our GForge
site and is configured entirely through this installation package. Additional ap-
plications and services can be optionally included from the installer, or added
at a later time.

3.4 Performance and Scalability

A crucial aspect of the preservation system is the establishment of a distributed,
reliable, and scalable computational tier. A typical preservation workflow may
consist of a set of components for data characterization, migration, and verifica-
tion and could be applied to millions of digital objects. In principle, these work-
flows could be easily parallelized and run in a massively parallel environment.
However, the fact that preservation tools often rely on closed source, third party
libraries and applications that often require platform-dependent and non-trivial
installation procedures prevents the utilization of existing large-scale comput-
ing infrastructures, such as Grids. In order to efficiently execute a preservation
plan, a varying set of preservation tools would need to be available on a scalable
number of computational nodes.

Advances in virtualization allow the deployment of entire computational en-
vironments, including operating systems and applications, to distributed compu-
tational nodes. This allows one to instantiate sets of transient system images on
demand, which can be federated as a virtualized cluster. We have implemented
a prototype Job Submission Service (JSS) that can manage such infrastructures

18 http://gforge.org/gf/
19 http://subversion.tigris.org/



and execute Planets preservation workflows on a virtual computing cluster or
Cloud. Initial experiments with the Amazon Elastic Compute Cloud (EC2) re-
ported elsewhere [14] have demonstrated the feasibility of this approach for the
Planets service architecture. Significant performance increases were achieved us-
ing only five cluster nodes, proving the potential of employing even small clus-
ters for digital preservation actions on large volumes of data. Furthermore, these
results indicated that the system achieves good scalability when significantly
increasing the number of utilized cluster nodes.

The Storage Research Broker (SRB) of the San Diego Supercomputer center,
along with the recent extension iRODS [15] provides an infrastructure for imple-
menting preservation-specific policies on a data grid. However, its primary pur-
pose is to provide scalable archival storage and metadata management, whereas
the Planets IF approach is to provide scalable computational resources for car-
rying out preservation plans involving mass migration or characterisation of
millions of digital objects.

4 Conclusions and Future Work

After the third project year, the Planets Interoperability Framework now pro-
vides a stable preservation infrastructure in its fourth release. This infrastructure
is available for download20 in a platform-independent Java-based installation
package, with options for deploying additional Planets applications and services.

In the fourth and final year of the project, the primary focus will not be on
functionality – component development will be limited primarily to bug-fixing
– but on architecture improvements. Specifically, the database and application
server layers will be separated in order to support clustering of Planets Instances,
allowing the infrastructure to be deployed as a robust, high-availability service.
In addition, work will continue along the lines of Schmidt et al. [14], in order to
provide highly scalable computational services for preservation actions based on
virtual computational clusters.

Finally, field tests of the Planets Software Suite will be carried out at partner
institutions, demonstrating how the Interoperability Framework and the asso-
ciated Planets applications and services can act as an added-value preservation
action system for existing digital repositories at national libraries and archives.

Acknowledgments

Work presented in this paper is partially supported by the European Community
under the Information Society Technologies (IST) Programme of the 6th FP for
RTD - Project IST-033789.

References

1. Farquhar, A., Hockx-Yu, H.: Planets: Integrated Services for Digital Preservation.
International Journal of Digital Curation, Vol. 2, No. 2 (2007)

20 http://gforge.planets-project.eu/gf/project/if sp/



2. Strodl, S., Rauber, A., Rauch, C., Hofman, H., Debole, F., Amato, G.: The
DELOS Testbed for Choosing a Digital Preservation Strategy. In: Digital Li-
braries: Achievements, Challenges and Opportunities. LNCS, vol. 4312, pp. 323–
332. Springer, Heidelberg (2006)

3. ISO Standard 14721:2003: Space Data and Information Transfer SystemsA Refer-
ence Model for an Open Archival Information System (OAIS). International Or-
ganization for Standardization (2003)

4. Giaretta, D.: The CASPAR Approach to Digital Preservation. The International
Journal of Digital Curation. Issue 1, vol. 2. (2007)
http://www.ijdc.net/ijdc/article/view/29/32

5. Factor, M., Naor, D., Rabinovici-Cohen, S., Ramati ,L., Reshef, P., Ronen, S.,
Satran, J., Giaretta, D.: Preservation DataStores: New storage paradigm for preser-
vation environments. IBM Journal of Research and Development on Storage Tech-
nologies and Systems, Volume 52, Number 4/5 (2008)

6. Oltmans, E., van Diessen, R.J., van Wijngaarden, H.: Preservation Functional-
ity in a Digital Archive. JCDL ’04: Proceedings of the 4th ACM/IEEE-CS joint
conference on Digital libraries, 279–286 (2004)

7. van Diessen, R.J., van Rijnsoever, B.J.: IBM/KB Long-term Preservation Study:
Managing Media Migration in a Deposit System (2002)
http://www-05.ibm.com/nl/dias/resource/migration.pdf

8. Janée, G., Mathena, J.; Frew, J.: A data model and architecture for long-term
preservation. JCDL ’08: Proceedings of the 8th ACM/IEEE-CS joint conference
on Digital libraries, 134–144 (2008)

9. Heslop, H., Davis, S., Wilson, A.: An Approach to the Preservation of Digital
Records. National Archives of Australia Green Paper. (2002)
http://naa.gov.au/Images/An-approach-Green-Paper tcm2-888.pdf

10. Hunter, J., Choudhury, S.: A semi-automated digital preservation system based
on semantic web services. JCDL ’04: Proceedings of the 4th ACM/IEEE-CS joint
conference on Digital libraries, 269–278 (2004)

11. Brown, A.: Developing Practical Approaches to Active Preservation. The Interna-
tional Journal of Digital Curation. Issue 1, vol. 2. (2007)
http://www.ijdc.net/ijdc/article/view/37/42

12. Becker, C., Kulovits, H., Rauber, A., Hofman, H.: Plato: a service-oriented deci-
sion support system for preservation planning. JCDL ’08: Proceedings of the 8th
ACM/IEEE-CS joint conference on Digital libraries, (2008)

13. Aitken,, B., Helwig, P., Jackson, A.N., Lindley, A., Nicchiarelli, E., Ross, S.: The
Planets Testbed: Science for Digital Preservation. code{4}lib Journal, Issue 3, 2008-
06-23 (2008)
http://journal.code4lib.org/articles/83

14. Schmidt, R., Sadilek, C., King, R.: A Service for Data-Intensive Computations
on Virtual Clusters. INTENSIVE 2009: Proceedings of The First International
Conference on Intensive Applications and Services, (to appear)

15. Rajasekar, A., Wan, M., Moore, R., Schroeder, W.: A Prototype Rule-based Dis-
tributed Data Management System. HPDC workshop on “Next Generation Dis-
tributed Data Management”, May 2006, Paris, France (2006)


