

Historisch

Kulturwissenschaftliche

Informationsverarbeitung

taha tangki

Session: **Characterisation of Digital Content**

Digital Preservation – The Planets Way Sofia, 16 – 18 September 2009

Volker Heydegger and Jan Schnasse

Historisch

Kulturwissenschaftliche

Informationsverarbeitung

Characterising Digital Content: The eXtensible Characterisation Languages

Digital Preservation – The Planets Way Sofia, 16 – 18 September 2009

Volker Heydegger

Overview
Characterisation: Why and What
About File Formats
XCL: Goals
XCL: Architecture
XCL by Example

Why characterisation?

"Characterisation is an essential precursor to preservation. It provides the information required to make preservation planning decisions about digital objects, and to validate the results of preservation actions. "

(A. Brown: Developing Practical Approaches to Active Preservation, IJDC, 2007)

Why characterisation?

"Characterisation is an essential precursor to preservation. It provides the information required to make preservation planning decisions about digital objects, and to validate the results of preservation actions. "

(A. Brown: Developing Practical Approaches to Active Preservation, IJDC, 2007)

Why characterisation?

"Characterisation is an essential precursor to preservation. It provides the information required to make preservation planning decisions about digital objects, and to validate the results of preservation actions."

(A. Brown: Developing Practical Approaches to Active Preservation, IJDC, 2007)

Why characterisation?

Source: S. Abrams: Automated Characterization in Preservation Workflows. *Tools and Trends: International Conference on Digital Preservation* Koninklijke Bibliotheek, 1-2 November 2007

What is subject to characterisation?

"One essential process in digital preservation is to perform format characterization to extract technical metadata associated with each digital object in the preservation archival collection. The technical metadata are important attributes for understanding and managing the digital archival collections, especially for format monitoring and researching format transformation procedures."

What is subject to characterisation?

"One essential process in digital preservation is to perform format characterization to extract technical metadata associated with each digital object in the preservation archival collection. The technical metadata are important attributes for understanding and managing the digital archival collections, especially for format monitoring and researching format transformation procedures."

What is subject to characterisation?

"One essential process in digital preservation is to perform format characterization to extract technical metadata associated with each digital object in the preservation archival collection. The technical metadata are important attributes for understanding and managing the digital archival collections, especially for format monitoring and researching format transformation procedures."

About File Formats

What is a format?

011100110001110100011010...

- On a very basic level (storage level) digital content is nothing but binary data
- On the software level, digital content is stored as formatted data, i.e. as *meaningful* sequences of bytes
 - \rightarrow (File) Format
- On the most human-perceivable level it appears in a rendered form

How many file formats are used more often?

*** * * *** Source: Planets internal report: Gap analysis in tool provision (third version).

Suitability of formats for preservation (1)

High confidence	Medium confidence	Low confidence
<pre> </pre>	 BMP (*.bmp) JPEG/JFIF (*.jpg) JPEG2000 (prefer lossless or uncompressed) (*.jp2) TIFF (compressed) GIF (*.gif) 	 MrSID (*.sid) TIFF (in Planar format) FlashPix (*.fpx) PhotoShop (*.psd) All other raster image formats not listed here

Suitability of formats for preservation (2)

High confidence	Medium confidence	Low confidence
 Plain text (encoding: ISO8859-1 - 9, UTF-8, UTF-16 with BOM) XML (includes XSD/XSL/XHTML, etc.; with included or accessible schema and character encoding explicitly specified) PDF/A-1 (ISO 19005-1) 	 Cascading Style Sheets (*.css) DTD (*.dtd) PDF (*.pdf) (embedded fonts) Rich Text Format 1.x (*.rtf) HTML 4.x (include a DOCTYPE declaration) SGML (*.sgml) Open Office (*.sxw/*.odt) Office Open XML 	<pre>&PDF (*.pdf) (encrypted)</pre>

Source: http://www.fcla.edu/digitalArchive/ pdfs/recFormats.pdf

Suitability of formats for preservation (3)

High confidence	Medium confidence	Low confidence
 AIFF (PCM) (*.aif, *.aiff) WAV (PCM) (*.wav) 	 SUN Audio (uncompressed) (*.au) Standard MIDI (*.mid, *.midi) Ogg Vorbis (*.ogg) Free Lossless Audio Codec (*.flac) Advance Audio Coding (*.mp4, *.m4a, *.aac) MP3 (MPEG-1/2, Layer 3)(*.mp3) 	 AIFC (compressed) (*.aifc) NeXT SND (*.snd) RealNetworks 'Real Audio, (*.ra, *.rm, *.ram) Windows Media Audio (*.wma) WAV (compressed) (*.wav) All other audio formats not listed here

Criteria for suitability

- Openess
- Adoption
- Complexity
- Technical protection mechanism
- Self-documentation
- Robustness
- Dependencies

(J. Rog, C. van Wijk: Evaluating File Formats for Long-term Preservation, iPres 2007)

Robustness of Formats

Robustness

::= resilience of file formats against bit-stream corruption

What happens if data is corrupted in files?

💑basi0g08.tif - IrfanView (Zoom: 725 x 725)	
File Edit Image Options View Help	

Testimage: Tiff, greyscale, 32x32 pixel, 8 bit per pixel

0x000:	49	49	2A	00	08	04	00	00	00	01	02	03	04	05	06	07	
0x010:	08	09	AO	OB	OC	OD	0E	OF	10	11	12	13	14	15	16	17	
0x020:	18	19	1A	1B	1C	1D	1E	1F	20	21	22	23	24	25	26	27	
0x030:	28	29	2A	2B	2C	2D	2E	2F	30	31	32	33	34	35	36	X	_
0x040:	38	39	ЗA	ЗB	3C	ЗD	ЗE	ЗF	40	41	42	43	44	45	46	47	
0x050:	48	49	4A	4B	4C	4D	4E	4F	X	51	52	53	54	55	56	57	\longrightarrow FF
0x060:	58	59	5A	5B	5C	5D	5E	5F	60	61	62	63	64	65	66	67	
0x070:	68	69	6A	6B	6C	6D	6E	6F	70	71	72	73	74	75	×	77	/
Ox080:	78	79	7A	7B	7C	7D	7E	7F	80	81	82	83	84	85	86	87	
Ox090:	88	89	8A	8B	8C	8D	8E	8F	90	91	92	93	94	95	96	97	
OxOAO:	98	99	9A	9B	9C	9D	9E	9F	AO	A1	A2	AЗ	A4	A5	A6	A7	
OxOBO:	A8	A9	AA	AB	AC	AD	AE	AF	BO	B1	B2	B3	B4	B5	B6	B7	
0x0C0:	B8	B9	BA	BB	BC	BD	BE	BF	CO	C1	C2	C3	C4	C5	C6	C7	
OxODO:	C8	C9	CA	CB	CC	CD	CE	CF	DO	D1	D2	DЗ	D4	D5	D6	D7	

First 224 bytes of testfile

Information loss: 1 byte data = = 1 Pixel

Ox3F0: 0F 0E nD. nc **OB** ΠÀ 0x400: $\mathbf{14}$ $\Pi 2$ nn nn **D**1 0×410 : **N1** 0x420:**D**2 00 00 **f**11 00 00 0x430: nn nn 00 0 00 0x440: 0x450: 00 12 01 03 00 01 00 00 00 01 00 00 00 01 0x460: 00 00 0×470 : 00 00 01 00 00 17 01 04 **n**1 0x480: 1A 01 05 00 01 00 00 CE 1B00 00 00 D6 0x490: 04 00 1C0x4A0: 00 00 00 28 01 03 AO OO 00 00 0x4B0: 00 DE 04 00 00 00 0x4C0:00 00 03 00 00 E8 00 00

Part of the TIFF Image File Directory, Tag: Photometric Interpretation

1 bit changes == 100% information changed

👺 basilon08 tif - Irfan¥iew (Zoom: 725 x 725)	
File Edit Image Options View Help	
🖆 🔜 🖬 🗙 🐰 ங 🛍 🗠 🕕 🔍 🔍 ← ➡ 🗊 💵 1/13 👘 Р 🚔	

Table 1. Results for RBt	Impercentag		ious me i	ormats
	1 Byte	0.01	0.1%	1.0%
TIFF	1		1	1
uncompressed	0.00 (0.00063)	0.56	6.64	48.83
JPEG compressed, ratio 1:2.60 (62%)	2.14 (0.00166)	13.03	-	-
JPEG compressed, ratio 1:10.72 (90%)	2.44 (0.00505)	13.32	-	-
LZW compressed, ratio 1:1.01 (2%)	1.37 (0.00064)	18.79	77.95	99.34
ZIP compressed, ratio 1:1.28 (22%)	27.12 (0.00081)	84.92	98.47	-
PNG				
ZLIB compressed, unfiltered	18.21 (0.00074)	79.15	97.63	-
ZLIB compressed, filtered	25.05 (0.00085)	81.83	98.08	-
BMP (windows)				
uncompressed	0.00 (0.00063)	0.14	1.92	15.29
JP2				
lossless, ratio 1:1.36 (27%)	17.53 (0.00086)	76.22	94.29	-
lossy, ratio 1:7.42 (87%)	33.31 (0.00166)	51.86	95.03	-
lossy, ratio 1:2.64 (62%)	22.61 (0.00468)	72.93	95.62	-

Table 1: Results for R_{Bt} (in percentage) for various file formats

V.Heydegger: Analysing the Impact of File Formats on Data Integrity, Archiving 2008

Categories of characteristics

What is subject to characterisation?

"One essential process in digital preservation is to perform format characterization to extract technical metadata associated with each digital object in the preservation archival collection. The technical metadata are important attributes for understanding and managing the digital archival collections, especially for format monitoring and researching format transformation procedures."

Non-technical characteristics ("associated metadata")

What's the name of the object? Which software created the object? Who holds the intellectual rights for the object? When was the object modified for the last time? Which collection does the object belong to? Where is the object located in our repository?

Technical characteristics

(#19185325 soft Heck after 2000 - (ChDokumente und Einstellungen/heydegger/Eigene Dateen/promotion/lattest/Molfpic/jim_og.kt)	
A 1 C A 1 C	
Datei Bearbeiten Optioren Suchen Hilfe	
0: H9 49 2A 00 18 00 00 70 00 00 00 01 00 00 00 01 01 00 70 00 00 01 00 70 00 00 00 01 00 00 00 01 00 00 00 01 00 00	
16: 70 CO 00 00 01 OC 00 00 0E 00 FE 00 04 00 01 00 }	
80: 00 0 01 00 00 00 00 00 01 00 00 01 00 00	
112: 03 (0 01 00 00 01 00 00 00 16 01 04 00 01 00	
128: 00 (0 53 01 00 0(17 01 04 00 01 00 00 CF 6E	-
	essed
176: 00 C0 02 00 00 CC 41 01 03 00 02 00 00 0C 80 00	
192: 06 to 00 00 0t 17 19 25 19 17 16 16 15	
240: 26 19 19 19 1A 1A 18 16 15 16 15 13 13 13 15 16 &	
256: 18 1A 1A 19 18 17 17 18 19 18 17 18 15 18 17 1A $Tag = 257 (101 \text{ H})$	
272: IA	
288: 16 16 15 16 14 15 14 16 16 18 1A 18 16 1A 20 1F Type = SHORT or LONG	
304: 10 10 10 10 11 14 14 10 19 18 1A 10 1E 18 19 1A	
320: 18 JC 1F 1E 18 1E 1C 1A 18 18 16 18 17 17 18 18	
336: 19 19 18 17 18 1C 1F 24 1F 1C 1C 1B 1A 17 18 1A	
352: 10 JA 10 10 10 10 10 11 10 10 10 10 10 10 10	
200: 1/ 17 10 10 1/ 16 10 10 10 10 10 10 10 10 17 mm.	
400: 17 17 18 18 19 17 16 17 18 17 17 18 17 17 16 15	
416: 13 13 14 15 16 16 18 1C 18 18 15 15 14 17 18 17	
432: 17 17 16 16 17 17 15 16 16 14 13 15 15 15 16 The number of columns in the image, i.e., the number	of pixels per ro
448: 17 16 16 15 15 15 16 15 15 15 15 17 16 16 18 10	
464: 19 1C 19 15 14 14 15 15 15 19 15 1A 1A 1C 1A 1A	
480: 1A 1B 1C 1B 1A 1A 19 1A 1C 1D 1C 1C 1C 1C 1E 1B Type = SHORT or LONG	
496: 1A 19 19 19 19 19 19 19 19 1A 1A 1A 1A 1A 1A 1A	
N = 1	
544 · 18 18 18 18 18 18 18 18 18 18 18 18 18	
560: 1A 1A 1A 1A 1A 19 19 19 19 18 19 19 1A 1A 1A 1B	
576: 1A 19 1B 1E 1D 1E 1F 20 22 22 1D 1C 1D 1D 1E	
592: 20 1E 1C 1C IF 1F 1F 1E 1D 1A 1B 1C 1C 1C 1E	
Dokument nicht geländent Position: 0 Dateigidte: 91 HByte	
	nets

Lessons learnt so far

- Characterisation is an essential part within an overall preservation framework.
- File Format is the central concept for representation of digital content.
- A Format describes the characteristics of objects.
- There is a huge amount of formats but only a couple of them are actually suitable for preservation.

XCL: Goals

In practice:

- Develop an "eXtensible Characterisation Definition Language" (XCDL), able to describe the content of digital objects (=1 + n more files), processible by a software tool for further analysis.

- Develop an "eXtensible Characterisation Extraction Language" (XCEL), able to describe any machine readable format in a formal language, processible by a software tool for extraction of content as XCDL.

XCL: Goals

- Support preservation planning framework
- Support a specific preservation action task: Evaluation of file format conversion
- Develop a more abstract model for extraction of characteristics (syn. properties) from files
- Develop tools which use this model in order to enable characterisation in an efficiently, i.e. in an automated way

Why automate?

Assumption:

Preservation is only feasible, if the content of two digital objects can be compared without human intervention.

Why automate?

Source: http://www.fcla.edu/digitalArchive/pdfs/reports/ ingest_stats_February_09.pdf

XCL: Goals

- Support preservation planning framework
- Support a specific preservation action task: Evaluation of file format conversion
- Develop a more abstract model for extraction of characteristics (syn. properties) from files
- Develop tools which use this model in order to enable characterisation in an efficiently, i.e. in an automated way

XCL: Main application: Evaluation of format conversion

The Ontology

XML as backbone language

eXtensible Characterisation Extraction Language (XCEL)

- Describing how properties of digital objects are stored
- File format specification tagged in XML, according to the XCEL language definitions
- Interpretable through an XCEL interpreter (Extractor), able to extract characteristics

XCEL: Global Architecture

XCEL: Basic Structuring Elements There are just a few elements sufficient enough to describe a file format: nonValidValues processing valueInterpretation param item valueLabel value symbol planets

XCDL: Basic Structuring Elements Again, there are just a few elements sufficient enough to describe the content of a digital object: type object dataRef normData property valueSet value propertySet labValue planets

5

(/1988/4056/t Heck shar 2000 - [ChD okumente und Einstellungen/heydegge//Eigene Datsen/pronotion/kittes//koll/pic/(jmog.W] Datei Bearbeiten Optionen Suchen Hife	
D 😅 🖬 🔁 🔘 🖇 🕾 🖄 🗠 👪 🛝 🛷	
0: 49 49 2A 00 18 00 00 70 00 00 80 01 00 80 80 II*}.	Image width: 277
16: 7D CO 00 00 01 0C 00 00 0E 00 FE 00 04 00 01 00 }	
32: 00 00 00 00 00 00 01 03 00 01 00 00 00 15 01	
	Image length: 339
96: 00 (0 11 01 04 00 01 00 00 00 C6 00 00 00 15 01	inago longin. 000
112: 03 (0 01 00 00 00 01 00 00 16 01 04 00 01 00	
128: 00 C0 53 01 00 0C 17 01 04 00 01 00 00 00 CF 6ES	
144: 01 (0 IA 01 05 00 01 00 00 00 08 00 00 00 IB 01	
160: 05 (0 01 00 00 00 10 00 00 00 28 01 03 00 01 00	
176: 00 C0 02 00 00 0C 41 01 03 00 02 00 00 00 CB 00λΕ.	
192: 08 to 00 00 00 0t 1A 19 25 19 17 16 17 18 18 15X	ImageLength
240 - 26 10 10 10 10 10 10 10 10 10 10 10 10 10	The number of rows of pixels in the image.
256: 18 1A 1A 19 18 17 17 18 19 18 17 18 15 18 17 1A	$T_{ag} = 257 (101 \text{ H})$
272: 1A	14g 257 (10111)
288: 16 16 15 16 14 15 14 16 16 18 1A 18 16 1A 20 1F	Type = SHORT or LONG
004: 1C 1C 1C 1D 1F 16 1A 1C 19 18 1A 1D 1E 18 19 1A	N -1
320: 18 JC 1F 1E 18 1E 1C 1A 18 18 16 18 17 17 18 18	N – I
336: 19 19 18 17 18 10 1F 24 1F 10 10 1B 1A 17 18 1A\$	No default. See also ImageWidth.
552: 10 1A 18 18 16 17 19 18 18 17 18 18 10 18 18	
368: 1/ 19 10 10 1/ 10 15 10 10 10 10 17 16 16 10 17	
400: 17 17 18 18 19 17 16 17 18 17 18 17 18 17 16 15	ImageWidth
416: 13 13 14 15 16 16 18 10 18 18 15 15 14 17 18 17	mageman
432: 17 17 16 16 17 17 15 16 16 14 13 15 15 15 15 16	The number of columns in the image, i.e., the number of pixels per row.
448: 17 16 16 15 15 15 16 15 15 15 15 17 16 16 18 10	T 055 (100 II)
464: 19 1C 19 15 14 14 15 15 15 19 15 1A 1A 1C 1A 1A	Tag = 256 (100.H)
480: 1A 1B 1C 1B 1A 1A 19 1A 1C 1D 1C 1C 1C 1C 1E 1B	Type = SHORT or LONG
496: 1A 19 19 19 19 19 19 19 19 19 1A 1A 1A 1A 1A 1A 1A 1A	
512: IA IA IA IA IB 10 10 10 10 10 10 10 10 10 10 10 10	N = 1
540: 10 10 10 10 15 10 10 10 10 10 10 10 10 10 10 10 10 10	No default. See also ImageLength
560: 1A 1A 1A 1A 1A 19 19 19 18 19 19 1A 1A 1A 1B	To defail. See also magebengal.
576: 1A 19 1B 1E 1D 1E 1F 20 22 22 1D 1C 1D 1D 1D 1E	
592: 20 1E 1C 1C 1F 1F 1F 1E 1D 1A 1B 1C 1C 1C 1C 1B	
Dokument richt geöndest Position: 0 Dateigidile: 91 HByte	
	- Idaats

XCEL representation

<!-- Tag 256: ImageWidth (XCL: imageWidth) --> <item xsi:type="structuringItem" identifier="IFDE_256" optional="true"> <symbol interpretation="uint16" length="2" value="256"/> <item xsi:type="structuringltem" order="choice"> <item xsi:type="structuringItem" order="sequence"> <!- Data type (value .3' means uint16)--> <symbol interpretation="uint16" length="2" value="\$"/> <!- number of values (N)-> <symbol interpretation="uint32" length="4" value="1"/> <!-- the value and name of property --> <symbol interpretation="uint16" length="2" name="imageWidth"/> <!-- wasted space--> <symbol interpretation="uint16" length="2"/> [...] ImageWidth </item> </item> </item>

The number of columns in the image, i.e., the number of pixels per row.

Tag = 256 (100.H)

```
Type = SHORT or LONG
```

```
N
      = 1
```

No default. See also ImageLength.

XCEL representation

<!-- Tag 256: ImageWidth (XCL: imageWidth) --> <item xsi:type="structuringItem" identifier="IFDE_256" optional="true"> <symbol interpretation="uint16" length="2" value="256"/> <item xsi:type="structuringltem" order="choice"> <item xsi:type="structuringItem" order="sequence"> <!- Data type (value .3' means uint16)--> <symbol interpretation="uint16" length="2" value="3"/> <!- number of values (N)-> <symbol interpretation="uint32" length="4" value="1 /> <!-- the value and name of property --> <symbol interpretation="uint16" length="2" name="imageWidth"/> <!-- wasted space--> <symbol interpretation="uint16" length="2"/> [...] ImagelWidth </item> </item> The number of columns in the image, i.e., the number of pixels per row. </item> Tag = 256 (100.H) Type = SHORT or LONG N = 1

No default. See also ImageLength.

XCEL representation

```
<!-- Tag 256: ImageWidth (XCL: imageWidth) -->
 <item xsi:type="structuringItem" identifier="IFDE_256"
 optional="true">
 <symbol interpretation="uint16" length="2" value="256"/>
  <item xsi:type="structuringItem" order="choice">
   <item xsi:type="structuringItem" order="sequence">
    <!- Data type (value .3' means uint16)-->
    <symbol interpretation="uint16" length="2" value="3"/>
    <!- number of values (N)->
    <symbol interpretation="uint32" length="4" value="1"/>
    <!-- the value and name of property -->
    <symbol interpretation="uint16" length="2"
    name="imageWidth"/>
    <!-- wasted space-->
    <symbol interpretation="uint16" length="2"/>
    [...]
                                                       ImadeWidth
   </item>
  </item>
                                                       The number of columns in the image, i.e., the number of pixels per row.
 </item>
                                                           =256 (100.H)
                                                       Tag
                                                           = SHORT or LONG
                                                       Type
                                                       Ν
                                                            =
                                                       No default. See also ImageLength.
```


XCDL representation

```
<property id="p5">
<name id="id30" >imageWidth</name>
<valueSet id="i_i1_s4" >
<labValue>
<val>277</val>
</labValue>
</labValue>
</valueSet>
</property>

XCEL entry:
```

<!-- the value and name of property --> <symbol interpretation="uint16" length="2" name="imageWidth"/>

XCDL representation

<property id="p5"> <name id="id30" >imageWidth</name> <valueSet id="i_i1_s4" > <labValue> <val>277</val> <type>int</type> </labValue> </valueSet> </property>

<!- Data type (value ,3' means uint16)--> <symbol interpretation="uint16" length="2" value="3"/>

XCDL representations can now be compared...

Measure name: equal

<u>ld:</u> 1

<u>Explanation</u>: Metric 'equal' is a simple comparison of two values (A, B) of any XCL data type on equality. <u>Data type of input value</u>: Any XCL data type <u>Data type of output value</u>: XCL: boolean (true, false)

Example:

Value for property X of XCDL1 (src)	Value for property X of XCDL2 (tar)		
<labvalue></labvalue>	<labvalue></labvalue>		
<val>32</val>	<val>32</val>		
<type>int</type>	<type>int</type>		
copra output:			
<pre>copra output: - <property id="2" name="imageHeight" state="complete" unit="pixel"></property></pre>			

Thank you for your attention!

Any questions?

