Archiving Relational Databases with SIARD Suite

Amir Bernstein,
Swiss Federal Archives
Presentation, Demonstration & Hands-on

- Relational Databases: a brief introduction
- Archiving Relational Databases with SIARD
- Demonstration: SIARD Suite and command-line
- SIARD Suite hands-on: group exercise
Relational Databases: a Brief Introduction

- Databases, the basics
- Database history, the way to the relational model
- The relational model
Database: The Basics

- A repository for a collection of computerized data files
- A database system consists of:
 - data
 - hardware
 - software
 - users
The Hierarchical Model (1960s)

- 1:1 or 1:n relations
- Redundancies

Football DB

- European Football
 - Leagues
 - Bulgaria
 - Lokomotiv Sofia
 - Hristo Bonev &c.
 - England
 - M. United
 - Dimitar Berbatov &c.
 - National Team
 - Bulgaria
 - Hristo Bonev
 - Dimitar Berbatov &c.
The Network Model (1960s)

- No redundencies
- Complex relations (n:m)

Diagram:
- Football DB
- European Football
 - Leagues
 - Bulgaria
 - Lokomotiv Sofia
 - Hristo Bonev &c.
 - England
 - M. United
 - Dimitar Berbatov &c.
 - National Team
Object-oriented Databases (1980s-1990s)

- Complex objects
- Code and data stored together

Football DB

Bulgaria - National Team
Hristo Bonev, Lokomotiv Sofia
Dimitar Petrov, Manchester United

England - National Team
John Terry, Chelsea
Sir Robert (Bobby) Charlton, Manchester United

Sponsoring – Bulgarian National Team
Sportfive Bulgaria
FA Marketing
The Relational Model (1970s)

- Introduced by Edgar F. Codd around 1970

- Basic assumptions:
 - Data have a longer life than software, hardware or systems
 - Data must be independent of software, hardware or systems
 - A query language must be standardized
 - All queries must be treated equally
The Relational Model - Advantages

- The model disconnects the schema (logical organization) of a database from the physical storage methods.
- It allows the separation of content and media.

External Level
- User defined views

Conceptual Level
- Logical view, "community user view"

Internal Level
- Physical description (blocks & pages), storage view
The Relation Model

- A simple table structure
- All information stored in tables

<table>
<thead>
<tr>
<th>N#</th>
<th>NAME</th>
<th>NATIONAL TEAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1</td>
<td>Dimitar Berbatov</td>
<td>Bulgaria</td>
</tr>
<tr>
<td>N2</td>
<td>Hristo Bonev</td>
<td>Bulgaria</td>
</tr>
<tr>
<td>N3</td>
<td>Michael Ballack</td>
<td>Germany</td>
</tr>
<tr>
<td>N4</td>
<td>Hannu Tihinen</td>
<td>Finland</td>
</tr>
<tr>
<td>N5</td>
<td>Marco Amelia</td>
<td>Italy</td>
</tr>
<tr>
<td>N6</td>
<td>Philipp Degen</td>
<td>Switzerland</td>
</tr>
<tr>
<td>N7</td>
<td>Tranquillo Barnetta</td>
<td>Switzerland</td>
</tr>
<tr>
<td>N7</td>
<td>Christoph Spycher</td>
<td>Switzerland</td>
</tr>
</tbody>
</table>
The Base Tables (Entities)

- Relations instead of redundancies

<table>
<thead>
<tr>
<th>League</th>
<th>Team</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td>BVB</td>
</tr>
<tr>
<td>L2</td>
<td>Byer Leverkusen</td>
</tr>
<tr>
<td>L3</td>
<td>FCZ</td>
</tr>
<tr>
<td>L4</td>
<td>Chelsea</td>
</tr>
<tr>
<td>L5</td>
<td>Munchester United</td>
</tr>
<tr>
<td>L6</td>
<td>Livorno</td>
</tr>
<tr>
<td>L7</td>
<td>Lokomotiv Sofia</td>
</tr>
<tr>
<td>L8</td>
<td>Eintrach Frankfurt</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>National Team</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1</td>
<td>Bulgaria</td>
</tr>
<tr>
<td>N2</td>
<td>Germany</td>
</tr>
<tr>
<td>N3</td>
<td>Finland</td>
</tr>
<tr>
<td>N4</td>
<td>Italy</td>
</tr>
<tr>
<td>N5</td>
<td>Switzerland</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Player</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>Philipp Degen</td>
</tr>
<tr>
<td>P2</td>
<td>Primin Schwegler</td>
</tr>
<tr>
<td>P3</td>
<td>Hannu Tihinen</td>
</tr>
<tr>
<td>P4</td>
<td>Michael Ballack</td>
</tr>
<tr>
<td>P5</td>
<td>Dimitar Berbetov</td>
</tr>
<tr>
<td>P6</td>
<td>Marco Amelia</td>
</tr>
<tr>
<td>P7</td>
<td>Hristo Bonev</td>
</tr>
<tr>
<td>P8</td>
<td>Christoph Spycher</td>
</tr>
<tr>
<td>P9</td>
<td>Kresimir Stanic</td>
</tr>
</tbody>
</table>
The Relation Tables (Relations)

<table>
<thead>
<tr>
<th>Player</th>
<th>National Team</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>Philipp Degen</td>
</tr>
<tr>
<td>P2</td>
<td>Primin Schwegler</td>
</tr>
<tr>
<td>P3</td>
<td>Hannu Tihinen</td>
</tr>
<tr>
<td>P4</td>
<td>Michael Ballack</td>
</tr>
<tr>
<td>P5</td>
<td>Dimitar Berbetov</td>
</tr>
<tr>
<td>P6</td>
<td>Marco Amelia</td>
</tr>
<tr>
<td>P7</td>
<td>Hristo Bonev</td>
</tr>
<tr>
<td>P8</td>
<td>Christoph Spycher</td>
</tr>
<tr>
<td>P9</td>
<td>Kresimir Stanic</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>National Team</th>
<th>Player</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1</td>
<td>Bulgaria</td>
</tr>
<tr>
<td>N2</td>
<td>Germany</td>
</tr>
<tr>
<td>N3</td>
<td>Finland</td>
</tr>
<tr>
<td>N4</td>
<td>Italy</td>
</tr>
<tr>
<td>N5</td>
<td>Switzerland</td>
</tr>
</tbody>
</table>
Easy Queries

- All queries are possible
- Efficient search method

```sql
SELECT NATIONAL.PLAYER,
    NATIONAL.TEAM AS "NATIONAL TEAM",
    LEAGUE.TEAM as "LEAGUE TEAM"
FROM NATIONAL, LEAGUE
WHERE LEAGUE.PLAYER = NATIONAL.PLAYER;
```

<table>
<thead>
<tr>
<th>PNL</th>
<th>Player</th>
<th>National Team</th>
<th>League</th>
</tr>
</thead>
<tbody>
<tr>
<td>PNL1</td>
<td>Hristo Bonev</td>
<td>Bulgaria</td>
<td>Lokomotiv Sofia</td>
</tr>
<tr>
<td>PNL2</td>
<td>Dimitar Berbatov</td>
<td>Bulgaria</td>
<td>Manchester United</td>
</tr>
<tr>
<td>PNL3</td>
<td>Michael Ballack</td>
<td>Germany</td>
<td>Chelsea</td>
</tr>
<tr>
<td>&c...</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Archiving the Relational Model

- What do we have to archive?
 - At least all tables

- Attention!
 - Datatypes must be suitable for archiving
 - Database table must be archived in a format suitable for long-term preservation
 - Values in the filed must also be suitable for long-term preservation
 - No codes
 - No encryption
The Goal: Preserving the Essence

- Data (primary & meta) and relations preserved
- „Look and feel“ is lost
Choosing the right Format

- Why format matters…

Try to read these disks with a modern machine

...10010100100...

Know the alphabet and translate

...23,010273,9300,00005…

See that it’s a data base. Know the language of that data base. Perform some statements in this language

„Shadrach gave 1 bushel of barley to the temple…”

„At the cbot February 1989, the trade limit for barley $0.09 per bushel …"
The SIARD Format

- **Software Independent Archiving of Relational Databases**

- SIARD is a universal file format, facilitating
 - SIARD converts database content into a single SIARD file
 - A SIARD file is a ZIP file (ZIP64) containing XML files
 - The SIARD file format is based on open standards: SQL:1999, XML, XML Schema, UNICODE, ...
The SIARD Archive

- Primary data
 - “content” folder with:
 - Folder for each table
 - All tables in xml format
 - LOB folders

- Metadata
 - “metadata” folder with:
 - One XML file (metadata.xml)
 - Includes all metadata from all levels
The SIARD Archive in a Glance:
SIARD Archive – an Open Format

- Official Planets format for archiving databases
- Can be used free of charge
- Downloadable for the SFA website
The SIARD Suite

SIARD Suite 1.0

Upload
Download

Examine and edit metadata

Databases

SIARD file
Prerequisites

- SIARD is platform independent
 - It operates in a JAVA environment (Java SE 1.5 or higher)

- SIARD can run on a single computer with a common GUI

Installation

- Click & install
- or direct use from a USB stick
The SIARD Suite Components

- **SiardEdit**
 - Edit your metadata
 - Create a SIARD-Archive with a new set of metadata
 - Match your metadata against those of a different archive
 - Update and complete your existing set of metadata
 - View and sort your primary data

- **SiardFromDb**
 - Convert your database into a SIARD-Archive
 - Create a full SIARD-Archive (with both metadata and primary data in the SIARD format), or:
 - Generate an empty SIARD-Archive (i.e. containing no primary data)

- **SiardToDb**
 - Facilitate your research within a given database
 - Load your SIARD-Archive into a database instance (with tables, views etc.)
 - Comfortably navigate and search within your database
SIARD Demonstration

- A stroll through a SIARD Archive (LADIS)
 - Using SIARD Edit
 - BLOBs in SIARD

- Archiving an Oracle DB with SIARD

- What’s inside? A look at a SIARD file

- ODBC connection and archiving a local MDB
SIARD – Hands-on!

- Four work groups
 - Archiving a database with SIARD (local / server-based)
 - Upload a SIARD archive into a database instance

- Rapporteurs
 - Your opinion on SIARD Suite
Exercise I – Create a SIARD Archive

- Launch SIARD Suite
- Download an Oracle database (cf. the following page)
- Navigate through the Data base using the SIARD Suite Editor
- Try to:
 - Add metadata
 - Edit the primary the data
 - Find the added meta data
 - Retrieve data to an Excel Sheet
- Please report to the plenary session
Exercise I – Create a SIARD Archive

- Database password: crm
Exercise II – Create a SIARD Archive

- Download an Access database
 - Use the database „crm“ provided on the USB stick (folder: databases)
 - Create a ODBC connection (remember the connection name)
 - Create a SIARD archive using the ODBC connection you have defined

- Navigate through the Data base using the SIARD Suite Editor

- Try to:
 - Add metadata
 - Edit the primary the data
 - Find the added meta data
 - Retrieve data to an Excel Sheet

- Please report to the plenary session
Exercise III – SIARD Archive to DB

- Download an Access database
 - Locate the “accounting.siard“ archive provided on the USB stick (folder: databases)
 - Create a new empty Access Database
 - Ensure you have read and write rights in this database
 - Create a ODBC connection for the database (remember the connection name)
 - Launch SIARD Suite.
 - Open the **accounting.siard**
 - Upload the SIARD archive into your empty access databases using the ODBC connection you have created

- Navigate through the Data base using MS Access
Exercise III – SIARD Archive to DB

- Try to:
 - Add metadata
 - Edit the primary data
 - Find the added metadata
 - Retrieve data to an Excel Sheet

- Please report to the plenary session
Any Questions?

- For further information please contact the Swiss Federal Archives:

 For SIARD: Amir.Bernstein@bar.admin.ch
Thank you! / Благодаря!